Lift coefficient prediction at high angle of attack using recurrent neural network

In this paper, identification of dynamic stall effect of rotor blade is considered. Recurrent Neural Networks have the ability to identify the nonlinear dynamical systems from training data. This paper describes the use of recurrent neural networks for predicting the coefficient of lift ( C Z ) at h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace science and technology 2003-12, Vol.7 (8), p.595-602
Hauptverfasser: Suresh, S., Omkar, S.N., Mani, V., Guru Prakash, T.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue 8
container_start_page 595
container_title Aerospace science and technology
container_volume 7
creator Suresh, S.
Omkar, S.N.
Mani, V.
Guru Prakash, T.N.
description In this paper, identification of dynamic stall effect of rotor blade is considered. Recurrent Neural Networks have the ability to identify the nonlinear dynamical systems from training data. This paper describes the use of recurrent neural networks for predicting the coefficient of lift ( C Z ) at high angle of attack. In our approach, the coefficient of lift ( C Z ) obtained from the experimental results (wind tunnel data) at different mean angle of attack θ mean is used to train the recurrent neural network. Then the recurrent neural network prediction is compared with experimental ONERA OA212 airfoil data. The time and space complexity required to predict C Z in the proposed method is less and it is easy to incorporate in any commercially available rotor code.
doi_str_mv 10.1016/S1270-9638(03)00053-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27823706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1270963803000531</els_id><sourcerecordid>27823706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-caaac672bcfe1aebf0a3c8c287e29418d95e760196e6aeaff1be132c8a54546a3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKs_QciT6MNqLt3s7pNI8QYFwctzmKaTNna7qUlW8d-btvrs0wzDOYc5HyGnnF1yxtXVCxcVKxol63MmLxhjpSz4HhlwJVQhBW_28_4nOSRHMb5nkWhGYkCeJ84majxa64zDLtF1wJkzyfmOQqILN19Q6OYtUm_zIYFZ0j66bk4Dmj6EjaXDPkCbR_ryYXlMDiy0EU9-55C83d2-jh-KydP94_hmUhgp61QYADCqElNjkQNOLQNpaiPqCvNrvJ41JVaK8UahAgRr-RS5FKaGclSOFMghOdvlroP_6DEmvXLRYNtCh76PWlS1kBVTWVjuhCb4GANavQ5uBeFbc6Y3BPWWoN7g0UzqLUHNs-9658Pc4tNh0HGDyGQ-uXvSM-_-SfgBrx152Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27823706</pqid></control><display><type>article</type><title>Lift coefficient prediction at high angle of attack using recurrent neural network</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Suresh, S. ; Omkar, S.N. ; Mani, V. ; Guru Prakash, T.N.</creator><creatorcontrib>Suresh, S. ; Omkar, S.N. ; Mani, V. ; Guru Prakash, T.N.</creatorcontrib><description>In this paper, identification of dynamic stall effect of rotor blade is considered. Recurrent Neural Networks have the ability to identify the nonlinear dynamical systems from training data. This paper describes the use of recurrent neural networks for predicting the coefficient of lift ( C Z ) at high angle of attack. In our approach, the coefficient of lift ( C Z ) obtained from the experimental results (wind tunnel data) at different mean angle of attack θ mean is used to train the recurrent neural network. Then the recurrent neural network prediction is compared with experimental ONERA OA212 airfoil data. The time and space complexity required to predict C Z in the proposed method is less and it is easy to incorporate in any commercially available rotor code.</description><identifier>ISSN: 1270-9638</identifier><identifier>EISSN: 1626-3219</identifier><identifier>DOI: 10.1016/S1270-9638(03)00053-1</identifier><language>eng</language><publisher>Elsevier SAS</publisher><subject>Dynamic stall ; Memory neuron network ; Recurrent multilayer perceptron network ; Unsteady rotor blade analysis</subject><ispartof>Aerospace science and technology, 2003-12, Vol.7 (8), p.595-602</ispartof><rights>2003 Éditions scientifiques et médicales Elsevier SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-caaac672bcfe1aebf0a3c8c287e29418d95e760196e6aeaff1be132c8a54546a3</citedby><cites>FETCH-LOGICAL-c338t-caaac672bcfe1aebf0a3c8c287e29418d95e760196e6aeaff1be132c8a54546a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1270-9638(03)00053-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Suresh, S.</creatorcontrib><creatorcontrib>Omkar, S.N.</creatorcontrib><creatorcontrib>Mani, V.</creatorcontrib><creatorcontrib>Guru Prakash, T.N.</creatorcontrib><title>Lift coefficient prediction at high angle of attack using recurrent neural network</title><title>Aerospace science and technology</title><description>In this paper, identification of dynamic stall effect of rotor blade is considered. Recurrent Neural Networks have the ability to identify the nonlinear dynamical systems from training data. This paper describes the use of recurrent neural networks for predicting the coefficient of lift ( C Z ) at high angle of attack. In our approach, the coefficient of lift ( C Z ) obtained from the experimental results (wind tunnel data) at different mean angle of attack θ mean is used to train the recurrent neural network. Then the recurrent neural network prediction is compared with experimental ONERA OA212 airfoil data. The time and space complexity required to predict C Z in the proposed method is less and it is easy to incorporate in any commercially available rotor code.</description><subject>Dynamic stall</subject><subject>Memory neuron network</subject><subject>Recurrent multilayer perceptron network</subject><subject>Unsteady rotor blade analysis</subject><issn>1270-9638</issn><issn>1626-3219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKs_QciT6MNqLt3s7pNI8QYFwctzmKaTNna7qUlW8d-btvrs0wzDOYc5HyGnnF1yxtXVCxcVKxol63MmLxhjpSz4HhlwJVQhBW_28_4nOSRHMb5nkWhGYkCeJ84majxa64zDLtF1wJkzyfmOQqILN19Q6OYtUm_zIYFZ0j66bk4Dmj6EjaXDPkCbR_ryYXlMDiy0EU9-55C83d2-jh-KydP94_hmUhgp61QYADCqElNjkQNOLQNpaiPqCvNrvJ41JVaK8UahAgRr-RS5FKaGclSOFMghOdvlroP_6DEmvXLRYNtCh76PWlS1kBVTWVjuhCb4GANavQ5uBeFbc6Y3BPWWoN7g0UzqLUHNs-9658Pc4tNh0HGDyGQ-uXvSM-_-SfgBrx152Q</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Suresh, S.</creator><creator>Omkar, S.N.</creator><creator>Mani, V.</creator><creator>Guru Prakash, T.N.</creator><general>Elsevier SAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20031201</creationdate><title>Lift coefficient prediction at high angle of attack using recurrent neural network</title><author>Suresh, S. ; Omkar, S.N. ; Mani, V. ; Guru Prakash, T.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-caaac672bcfe1aebf0a3c8c287e29418d95e760196e6aeaff1be132c8a54546a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Dynamic stall</topic><topic>Memory neuron network</topic><topic>Recurrent multilayer perceptron network</topic><topic>Unsteady rotor blade analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh, S.</creatorcontrib><creatorcontrib>Omkar, S.N.</creatorcontrib><creatorcontrib>Mani, V.</creatorcontrib><creatorcontrib>Guru Prakash, T.N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aerospace science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh, S.</au><au>Omkar, S.N.</au><au>Mani, V.</au><au>Guru Prakash, T.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lift coefficient prediction at high angle of attack using recurrent neural network</atitle><jtitle>Aerospace science and technology</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>7</volume><issue>8</issue><spage>595</spage><epage>602</epage><pages>595-602</pages><issn>1270-9638</issn><eissn>1626-3219</eissn><abstract>In this paper, identification of dynamic stall effect of rotor blade is considered. Recurrent Neural Networks have the ability to identify the nonlinear dynamical systems from training data. This paper describes the use of recurrent neural networks for predicting the coefficient of lift ( C Z ) at high angle of attack. In our approach, the coefficient of lift ( C Z ) obtained from the experimental results (wind tunnel data) at different mean angle of attack θ mean is used to train the recurrent neural network. Then the recurrent neural network prediction is compared with experimental ONERA OA212 airfoil data. The time and space complexity required to predict C Z in the proposed method is less and it is easy to incorporate in any commercially available rotor code.</abstract><pub>Elsevier SAS</pub><doi>10.1016/S1270-9638(03)00053-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1270-9638
ispartof Aerospace science and technology, 2003-12, Vol.7 (8), p.595-602
issn 1270-9638
1626-3219
language eng
recordid cdi_proquest_miscellaneous_27823706
source ScienceDirect Journals (5 years ago - present)
subjects Dynamic stall
Memory neuron network
Recurrent multilayer perceptron network
Unsteady rotor blade analysis
title Lift coefficient prediction at high angle of attack using recurrent neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lift%20coefficient%20prediction%20at%20high%20angle%20of%20attack%20using%20recurrent%20neural%20network&rft.jtitle=Aerospace%20science%20and%20technology&rft.au=Suresh,%20S.&rft.date=2003-12-01&rft.volume=7&rft.issue=8&rft.spage=595&rft.epage=602&rft.pages=595-602&rft.issn=1270-9638&rft.eissn=1626-3219&rft_id=info:doi/10.1016/S1270-9638(03)00053-1&rft_dat=%3Cproquest_cross%3E27823706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27823706&rft_id=info:pmid/&rft_els_id=S1270963803000531&rfr_iscdi=true