Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations

We combine a robust multiple‐scattering radiative transfer algorithm with the Thermal Emission Spectrometer (TES) spectral data set in order to characterize the properties of Martian aerosol particles. Because of the importance of accurate model input when performing such retrievals, we include self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. E. Planets 2003-09, Vol.108 (E9), p.1.1-n/a
Hauptverfasser: Wolff, Michael J., Clancy, R. Todd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue E9
container_start_page 1.1
container_title Journal of Geophysical Research. E. Planets
container_volume 108
creator Wolff, Michael J.
Clancy, R. Todd
description We combine a robust multiple‐scattering radiative transfer algorithm with the Thermal Emission Spectrometer (TES) spectral data set in order to characterize the properties of Martian aerosol particles. Because of the importance of accurate model input when performing such retrievals, we include self‐consistent and physically plausible treatments of surface emissivity and atmospheric aerosol dielectric functions, as well as gaseous absorption effects. Considerable effort is expended in the identification and discussion of potential sources of error and uncertainty. Significant results stemming from this analysis are a new dust aerosol dielectric function that appears to well represent the IR spectral behavior sampled by TES for a wide range of dust loading conditions, two distinct populations of water ice particles with reff of ∼1–2 μm and ∼3–4 μm; and distinct departures in dust particle sizes during the 2001A global dust storm from the canonical 1.6–1.7 μm values. Very consistent aerosol size distributions are obtained when 9 μm dust and 12 μm ice optical depths retrieved from this analysis are compared to visible optical depths retrieved from TES solar band emission phase function sequences [Clancy et al., 2003]. Direct comparison of our optical depths to those available from the Planetary Data System (PDS) (as provided by the TES science team) reveals a systematic bias toward τ values which are 20–30% (or more) too small. Much of this offset stems from the fact that TES PDS aerosol optical depths are actually an approximation to τabsorption, which is ∼30% lower than τextinction for Mars dust aerosols. Additional biases in TES optical depths arise from assumptions of fixed surface emissivity and temperature.
doi_str_mv 10.1029/2003JE002057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27821861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18880462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5102-bc2531c67668c6c7281242cc2b787c6a0f5e5ebe53809bae251c459cc23a4d553</originalsourceid><addsrcrecordid>eNqFkEtvFDEQhEeISKxCbvwAX-DEQLvHrz3CalnI5iGRQA4cLI_pUQyz443tAOHXx9FGwCn0pQ_9Vam6muYZh1cccP4aAbrDJQCC1I-aGXKpWkTAx80MuDAtIOonzUHO36COkEoAnzVfFnHKJbkwlczixMolsRx-E4sDO3apBDcxRynmOGY2pLhh55eUNm5ky03IOVTJ2ZZ8qRcqlFjsM6UfrtRDftrsDW7MdHC_95tP75bni_ft0enqw-LNUetlTd72HmXHvdJKGa-8RsNRoPfYa6O9cjBIktST7AzMe0couRdyXoHOia9SdvvNi53vNsWra8rF1miextFNFK-zRW2QG8X_C3JjDAiFFXy5A339PCca7DaFjUs3loO9a9v-23bFn9_7uuzdOCQ3-ZD_aiSKuVBQOdxxP8NINw962sPVxyXXcJel3YlCLvTrj8il71bpTkt7cbKyF5_l27VZr-1ZdwvuDZxG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18880462</pqid></control><display><type>article</type><title>Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Wolff, Michael J. ; Clancy, R. Todd</creator><creatorcontrib>Wolff, Michael J. ; Clancy, R. Todd</creatorcontrib><description>We combine a robust multiple‐scattering radiative transfer algorithm with the Thermal Emission Spectrometer (TES) spectral data set in order to characterize the properties of Martian aerosol particles. Because of the importance of accurate model input when performing such retrievals, we include self‐consistent and physically plausible treatments of surface emissivity and atmospheric aerosol dielectric functions, as well as gaseous absorption effects. Considerable effort is expended in the identification and discussion of potential sources of error and uncertainty. Significant results stemming from this analysis are a new dust aerosol dielectric function that appears to well represent the IR spectral behavior sampled by TES for a wide range of dust loading conditions, two distinct populations of water ice particles with reff of ∼1–2 μm and ∼3–4 μm; and distinct departures in dust particle sizes during the 2001A global dust storm from the canonical 1.6–1.7 μm values. Very consistent aerosol size distributions are obtained when 9 μm dust and 12 μm ice optical depths retrieved from this analysis are compared to visible optical depths retrieved from TES solar band emission phase function sequences [Clancy et al., 2003]. Direct comparison of our optical depths to those available from the Planetary Data System (PDS) (as provided by the TES science team) reveals a systematic bias toward τ values which are 20–30% (or more) too small. Much of this offset stems from the fact that TES PDS aerosol optical depths are actually an approximation to τabsorption, which is ∼30% lower than τextinction for Mars dust aerosols. Additional biases in TES optical depths arise from assumptions of fixed surface emissivity and temperature.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2003JE002057</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>aerosols ; Earth, ocean, space ; Exact sciences and technology ; Martian atmosphere ; radiative transfer ; remote sensing ; thermal emission spectrometer</subject><ispartof>Journal of Geophysical Research. E. Planets, 2003-09, Vol.108 (E9), p.1.1-n/a</ispartof><rights>Copyright 2003 by the American Geophysical Union.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5102-bc2531c67668c6c7281242cc2b787c6a0f5e5ebe53809bae251c459cc23a4d553</citedby><cites>FETCH-LOGICAL-c5102-bc2531c67668c6c7281242cc2b787c6a0f5e5ebe53809bae251c459cc23a4d553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2003JE002057$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2003JE002057$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15249460$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolff, Michael J.</creatorcontrib><creatorcontrib>Clancy, R. Todd</creatorcontrib><title>Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations</title><title>Journal of Geophysical Research. E. Planets</title><addtitle>J. Geophys. Res</addtitle><description>We combine a robust multiple‐scattering radiative transfer algorithm with the Thermal Emission Spectrometer (TES) spectral data set in order to characterize the properties of Martian aerosol particles. Because of the importance of accurate model input when performing such retrievals, we include self‐consistent and physically plausible treatments of surface emissivity and atmospheric aerosol dielectric functions, as well as gaseous absorption effects. Considerable effort is expended in the identification and discussion of potential sources of error and uncertainty. Significant results stemming from this analysis are a new dust aerosol dielectric function that appears to well represent the IR spectral behavior sampled by TES for a wide range of dust loading conditions, two distinct populations of water ice particles with reff of ∼1–2 μm and ∼3–4 μm; and distinct departures in dust particle sizes during the 2001A global dust storm from the canonical 1.6–1.7 μm values. Very consistent aerosol size distributions are obtained when 9 μm dust and 12 μm ice optical depths retrieved from this analysis are compared to visible optical depths retrieved from TES solar band emission phase function sequences [Clancy et al., 2003]. Direct comparison of our optical depths to those available from the Planetary Data System (PDS) (as provided by the TES science team) reveals a systematic bias toward τ values which are 20–30% (or more) too small. Much of this offset stems from the fact that TES PDS aerosol optical depths are actually an approximation to τabsorption, which is ∼30% lower than τextinction for Mars dust aerosols. Additional biases in TES optical depths arise from assumptions of fixed surface emissivity and temperature.</description><subject>aerosols</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Martian atmosphere</subject><subject>radiative transfer</subject><subject>remote sensing</subject><subject>thermal emission spectrometer</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtvFDEQhEeISKxCbvwAX-DEQLvHrz3CalnI5iGRQA4cLI_pUQyz443tAOHXx9FGwCn0pQ_9Vam6muYZh1cccP4aAbrDJQCC1I-aGXKpWkTAx80MuDAtIOonzUHO36COkEoAnzVfFnHKJbkwlczixMolsRx-E4sDO3apBDcxRynmOGY2pLhh55eUNm5ky03IOVTJ2ZZ8qRcqlFjsM6UfrtRDftrsDW7MdHC_95tP75bni_ft0enqw-LNUetlTd72HmXHvdJKGa-8RsNRoPfYa6O9cjBIktST7AzMe0couRdyXoHOia9SdvvNi53vNsWra8rF1miextFNFK-zRW2QG8X_C3JjDAiFFXy5A339PCca7DaFjUs3loO9a9v-23bFn9_7uuzdOCQ3-ZD_aiSKuVBQOdxxP8NINw962sPVxyXXcJel3YlCLvTrj8il71bpTkt7cbKyF5_l27VZr-1ZdwvuDZxG</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>Wolff, Michael J.</creator><creator>Clancy, R. Todd</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200309</creationdate><title>Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations</title><author>Wolff, Michael J. ; Clancy, R. Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5102-bc2531c67668c6c7281242cc2b787c6a0f5e5ebe53809bae251c459cc23a4d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>aerosols</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Martian atmosphere</topic><topic>radiative transfer</topic><topic>remote sensing</topic><topic>thermal emission spectrometer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolff, Michael J.</creatorcontrib><creatorcontrib>Clancy, R. Todd</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. E. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolff, Michael J.</au><au>Clancy, R. Todd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations</atitle><jtitle>Journal of Geophysical Research. E. Planets</jtitle><addtitle>J. Geophys. Res</addtitle><date>2003-09</date><risdate>2003</risdate><volume>108</volume><issue>E9</issue><spage>1.1</spage><epage>n/a</epage><pages>1.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We combine a robust multiple‐scattering radiative transfer algorithm with the Thermal Emission Spectrometer (TES) spectral data set in order to characterize the properties of Martian aerosol particles. Because of the importance of accurate model input when performing such retrievals, we include self‐consistent and physically plausible treatments of surface emissivity and atmospheric aerosol dielectric functions, as well as gaseous absorption effects. Considerable effort is expended in the identification and discussion of potential sources of error and uncertainty. Significant results stemming from this analysis are a new dust aerosol dielectric function that appears to well represent the IR spectral behavior sampled by TES for a wide range of dust loading conditions, two distinct populations of water ice particles with reff of ∼1–2 μm and ∼3–4 μm; and distinct departures in dust particle sizes during the 2001A global dust storm from the canonical 1.6–1.7 μm values. Very consistent aerosol size distributions are obtained when 9 μm dust and 12 μm ice optical depths retrieved from this analysis are compared to visible optical depths retrieved from TES solar band emission phase function sequences [Clancy et al., 2003]. Direct comparison of our optical depths to those available from the Planetary Data System (PDS) (as provided by the TES science team) reveals a systematic bias toward τ values which are 20–30% (or more) too small. Much of this offset stems from the fact that TES PDS aerosol optical depths are actually an approximation to τabsorption, which is ∼30% lower than τextinction for Mars dust aerosols. Additional biases in TES optical depths arise from assumptions of fixed surface emissivity and temperature.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2003JE002057</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. E. Planets, 2003-09, Vol.108 (E9), p.1.1-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_27821861
source Wiley Online Library - AutoHoldings Journals; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects aerosols
Earth, ocean, space
Exact sciences and technology
Martian atmosphere
radiative transfer
remote sensing
thermal emission spectrometer
title Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20the%20size%20of%20Martian%20aerosols%20from%20Thermal%20Emission%20Spectrometer%20observations&rft.jtitle=Journal%20of%20Geophysical%20Research.%20E.%20Planets&rft.au=Wolff,%20Michael%20J.&rft.date=2003-09&rft.volume=108&rft.issue=E9&rft.spage=1.1&rft.epage=n/a&rft.pages=1.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2003JE002057&rft_dat=%3Cproquest_cross%3E18880462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18880462&rft_id=info:pmid/&rfr_iscdi=true