Cracks in functionally graded materials
The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is model...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2003-12, Vol.362 (1), p.2-16 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 1 |
container_start_page | 2 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 362 |
creator | Bahr, H.-A Balke, H Fett, T Hofinger, I Kirchhoff, G Munz, D Neubrand, A Semenov, A.S Weiss, H.-J Yang, Y.Y |
description | The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages:
vertical
cracking
→
delamination→
blistering→
spalling
. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage. |
doi_str_mv | 10.1016/S0921-5093(03)00582-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27817284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509303005823</els_id><sourcerecordid>27817284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f8ad287763cdbf95982d83a22e94399ff0738c783c1b4689219f1b550e35cae83</originalsourceid><addsrcrecordid>eNqFkEtLBDEQhIMouK7-BGFOPg6jnfRkkpxEFl-w4EE9h2ymI9HZGU1mhf33zrriVWioy1dFVzF2zOGCA68vn8AIXkoweAZ4DiC1KHGHTbhWWFYG6102-UP22UHObwDAK5ATdjpLzr_nInZFWHV-iH3n2nZdvCbXUFMs3UApujYfsr0wCh396pS93N48z-7L-ePdw-x6XnpEPZRBu0ZopWr0zSIYabRoNDohyFRoTAigUHul0fNFVevxKRP4QkoglN6Rxik72eZ-pP5zRXmwy5g9ta3rqF9lK5TmSuhqBOUW9KnPOVGwHykuXVpbDnYzi_2ZxW46WxhvM4vF0Xe19dHY4itSstlH6jw1MZEfbNPHfxK-AZoGaC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27817284</pqid></control><display><type>article</type><title>Cracks in functionally graded materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bahr, H.-A ; Balke, H ; Fett, T ; Hofinger, I ; Kirchhoff, G ; Munz, D ; Neubrand, A ; Semenov, A.S ; Weiss, H.-J ; Yang, Y.Y</creator><creatorcontrib>Bahr, H.-A ; Balke, H ; Fett, T ; Hofinger, I ; Kirchhoff, G ; Munz, D ; Neubrand, A ; Semenov, A.S ; Weiss, H.-J ; Yang, Y.Y</creatorcontrib><description>The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages:
vertical
cracking
→
delamination→
blistering→
spalling
. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/S0921-5093(03)00582-3</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>FGM ; Fracture mechanics ; R-curve ; Residual stresses ; TBC</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2003-12, Vol.362 (1), p.2-16</ispartof><rights>2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-f8ad287763cdbf95982d83a22e94399ff0738c783c1b4689219f1b550e35cae83</citedby><cites>FETCH-LOGICAL-c338t-f8ad287763cdbf95982d83a22e94399ff0738c783c1b4689219f1b550e35cae83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0921-5093(03)00582-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Bahr, H.-A</creatorcontrib><creatorcontrib>Balke, H</creatorcontrib><creatorcontrib>Fett, T</creatorcontrib><creatorcontrib>Hofinger, I</creatorcontrib><creatorcontrib>Kirchhoff, G</creatorcontrib><creatorcontrib>Munz, D</creatorcontrib><creatorcontrib>Neubrand, A</creatorcontrib><creatorcontrib>Semenov, A.S</creatorcontrib><creatorcontrib>Weiss, H.-J</creatorcontrib><creatorcontrib>Yang, Y.Y</creatorcontrib><title>Cracks in functionally graded materials</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages:
vertical
cracking
→
delamination→
blistering→
spalling
. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage.</description><subject>FGM</subject><subject>Fracture mechanics</subject><subject>R-curve</subject><subject>Residual stresses</subject><subject>TBC</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLBDEQhIMouK7-BGFOPg6jnfRkkpxEFl-w4EE9h2ymI9HZGU1mhf33zrriVWioy1dFVzF2zOGCA68vn8AIXkoweAZ4DiC1KHGHTbhWWFYG6102-UP22UHObwDAK5ATdjpLzr_nInZFWHV-iH3n2nZdvCbXUFMs3UApujYfsr0wCh396pS93N48z-7L-ePdw-x6XnpEPZRBu0ZopWr0zSIYabRoNDohyFRoTAigUHul0fNFVevxKRP4QkoglN6Rxik72eZ-pP5zRXmwy5g9ta3rqF9lK5TmSuhqBOUW9KnPOVGwHykuXVpbDnYzi_2ZxW46WxhvM4vF0Xe19dHY4itSstlH6jw1MZEfbNPHfxK-AZoGaC8</recordid><startdate>20031205</startdate><enddate>20031205</enddate><creator>Bahr, H.-A</creator><creator>Balke, H</creator><creator>Fett, T</creator><creator>Hofinger, I</creator><creator>Kirchhoff, G</creator><creator>Munz, D</creator><creator>Neubrand, A</creator><creator>Semenov, A.S</creator><creator>Weiss, H.-J</creator><creator>Yang, Y.Y</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20031205</creationdate><title>Cracks in functionally graded materials</title><author>Bahr, H.-A ; Balke, H ; Fett, T ; Hofinger, I ; Kirchhoff, G ; Munz, D ; Neubrand, A ; Semenov, A.S ; Weiss, H.-J ; Yang, Y.Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f8ad287763cdbf95982d83a22e94399ff0738c783c1b4689219f1b550e35cae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>FGM</topic><topic>Fracture mechanics</topic><topic>R-curve</topic><topic>Residual stresses</topic><topic>TBC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahr, H.-A</creatorcontrib><creatorcontrib>Balke, H</creatorcontrib><creatorcontrib>Fett, T</creatorcontrib><creatorcontrib>Hofinger, I</creatorcontrib><creatorcontrib>Kirchhoff, G</creatorcontrib><creatorcontrib>Munz, D</creatorcontrib><creatorcontrib>Neubrand, A</creatorcontrib><creatorcontrib>Semenov, A.S</creatorcontrib><creatorcontrib>Weiss, H.-J</creatorcontrib><creatorcontrib>Yang, Y.Y</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahr, H.-A</au><au>Balke, H</au><au>Fett, T</au><au>Hofinger, I</au><au>Kirchhoff, G</au><au>Munz, D</au><au>Neubrand, A</au><au>Semenov, A.S</au><au>Weiss, H.-J</au><au>Yang, Y.Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cracks in functionally graded materials</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2003-12-05</date><risdate>2003</risdate><volume>362</volume><issue>1</issue><spage>2</spage><epage>16</epage><pages>2-16</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages:
vertical
cracking
→
delamination→
blistering→
spalling
. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0921-5093(03)00582-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2003-12, Vol.362 (1), p.2-16 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_27817284 |
source | Elsevier ScienceDirect Journals Complete |
subjects | FGM Fracture mechanics R-curve Residual stresses TBC |
title | Cracks in functionally graded materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cracks%20in%20functionally%20graded%20materials&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Bahr,%20H.-A&rft.date=2003-12-05&rft.volume=362&rft.issue=1&rft.spage=2&rft.epage=16&rft.pages=2-16&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/S0921-5093(03)00582-3&rft_dat=%3Cproquest_cross%3E27817284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27817284&rft_id=info:pmid/&rft_els_id=S0921509303005823&rfr_iscdi=true |