Cracks in functionally graded materials

The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2003-12, Vol.362 (1), p.2-16
Hauptverfasser: Bahr, H.-A, Balke, H, Fett, T, Hofinger, I, Kirchhoff, G, Munz, D, Neubrand, A, Semenov, A.S, Weiss, H.-J, Yang, Y.Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 2
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 362
creator Bahr, H.-A
Balke, H
Fett, T
Hofinger, I
Kirchhoff, G
Munz, D
Neubrand, A
Semenov, A.S
Weiss, H.-J
Yang, Y.Y
description The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking → delamination→ blistering→ spalling . This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage.
doi_str_mv 10.1016/S0921-5093(03)00582-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27817284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509303005823</els_id><sourcerecordid>27817284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f8ad287763cdbf95982d83a22e94399ff0738c783c1b4689219f1b550e35cae83</originalsourceid><addsrcrecordid>eNqFkEtLBDEQhIMouK7-BGFOPg6jnfRkkpxEFl-w4EE9h2ymI9HZGU1mhf33zrriVWioy1dFVzF2zOGCA68vn8AIXkoweAZ4DiC1KHGHTbhWWFYG6102-UP22UHObwDAK5ATdjpLzr_nInZFWHV-iH3n2nZdvCbXUFMs3UApujYfsr0wCh396pS93N48z-7L-ePdw-x6XnpEPZRBu0ZopWr0zSIYabRoNDohyFRoTAigUHul0fNFVevxKRP4QkoglN6Rxik72eZ-pP5zRXmwy5g9ta3rqF9lK5TmSuhqBOUW9KnPOVGwHykuXVpbDnYzi_2ZxW46WxhvM4vF0Xe19dHY4itSstlH6jw1MZEfbNPHfxK-AZoGaC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27817284</pqid></control><display><type>article</type><title>Cracks in functionally graded materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bahr, H.-A ; Balke, H ; Fett, T ; Hofinger, I ; Kirchhoff, G ; Munz, D ; Neubrand, A ; Semenov, A.S ; Weiss, H.-J ; Yang, Y.Y</creator><creatorcontrib>Bahr, H.-A ; Balke, H ; Fett, T ; Hofinger, I ; Kirchhoff, G ; Munz, D ; Neubrand, A ; Semenov, A.S ; Weiss, H.-J ; Yang, Y.Y</creatorcontrib><description>The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking → delamination→ blistering→ spalling . This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/S0921-5093(03)00582-3</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>FGM ; Fracture mechanics ; R-curve ; Residual stresses ; TBC</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2003-12, Vol.362 (1), p.2-16</ispartof><rights>2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-f8ad287763cdbf95982d83a22e94399ff0738c783c1b4689219f1b550e35cae83</citedby><cites>FETCH-LOGICAL-c338t-f8ad287763cdbf95982d83a22e94399ff0738c783c1b4689219f1b550e35cae83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0921-5093(03)00582-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Bahr, H.-A</creatorcontrib><creatorcontrib>Balke, H</creatorcontrib><creatorcontrib>Fett, T</creatorcontrib><creatorcontrib>Hofinger, I</creatorcontrib><creatorcontrib>Kirchhoff, G</creatorcontrib><creatorcontrib>Munz, D</creatorcontrib><creatorcontrib>Neubrand, A</creatorcontrib><creatorcontrib>Semenov, A.S</creatorcontrib><creatorcontrib>Weiss, H.-J</creatorcontrib><creatorcontrib>Yang, Y.Y</creatorcontrib><title>Cracks in functionally graded materials</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking → delamination→ blistering→ spalling . This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage.</description><subject>FGM</subject><subject>Fracture mechanics</subject><subject>R-curve</subject><subject>Residual stresses</subject><subject>TBC</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLBDEQhIMouK7-BGFOPg6jnfRkkpxEFl-w4EE9h2ymI9HZGU1mhf33zrriVWioy1dFVzF2zOGCA68vn8AIXkoweAZ4DiC1KHGHTbhWWFYG6102-UP22UHObwDAK5ATdjpLzr_nInZFWHV-iH3n2nZdvCbXUFMs3UApujYfsr0wCh396pS93N48z-7L-ePdw-x6XnpEPZRBu0ZopWr0zSIYabRoNDohyFRoTAigUHul0fNFVevxKRP4QkoglN6Rxik72eZ-pP5zRXmwy5g9ta3rqF9lK5TmSuhqBOUW9KnPOVGwHykuXVpbDnYzi_2ZxW46WxhvM4vF0Xe19dHY4itSstlH6jw1MZEfbNPHfxK-AZoGaC8</recordid><startdate>20031205</startdate><enddate>20031205</enddate><creator>Bahr, H.-A</creator><creator>Balke, H</creator><creator>Fett, T</creator><creator>Hofinger, I</creator><creator>Kirchhoff, G</creator><creator>Munz, D</creator><creator>Neubrand, A</creator><creator>Semenov, A.S</creator><creator>Weiss, H.-J</creator><creator>Yang, Y.Y</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20031205</creationdate><title>Cracks in functionally graded materials</title><author>Bahr, H.-A ; Balke, H ; Fett, T ; Hofinger, I ; Kirchhoff, G ; Munz, D ; Neubrand, A ; Semenov, A.S ; Weiss, H.-J ; Yang, Y.Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f8ad287763cdbf95982d83a22e94399ff0738c783c1b4689219f1b550e35cae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>FGM</topic><topic>Fracture mechanics</topic><topic>R-curve</topic><topic>Residual stresses</topic><topic>TBC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahr, H.-A</creatorcontrib><creatorcontrib>Balke, H</creatorcontrib><creatorcontrib>Fett, T</creatorcontrib><creatorcontrib>Hofinger, I</creatorcontrib><creatorcontrib>Kirchhoff, G</creatorcontrib><creatorcontrib>Munz, D</creatorcontrib><creatorcontrib>Neubrand, A</creatorcontrib><creatorcontrib>Semenov, A.S</creatorcontrib><creatorcontrib>Weiss, H.-J</creatorcontrib><creatorcontrib>Yang, Y.Y</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahr, H.-A</au><au>Balke, H</au><au>Fett, T</au><au>Hofinger, I</au><au>Kirchhoff, G</au><au>Munz, D</au><au>Neubrand, A</au><au>Semenov, A.S</au><au>Weiss, H.-J</au><au>Yang, Y.Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cracks in functionally graded materials</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2003-12-05</date><risdate>2003</risdate><volume>362</volume><issue>1</issue><spage>2</spage><epage>16</epage><pages>2-16</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking → delamination→ blistering→ spalling . This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0921-5093(03)00582-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2003-12, Vol.362 (1), p.2-16
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_27817284
source Elsevier ScienceDirect Journals Complete
subjects FGM
Fracture mechanics
R-curve
Residual stresses
TBC
title Cracks in functionally graded materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cracks%20in%20functionally%20graded%20materials&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Bahr,%20H.-A&rft.date=2003-12-05&rft.volume=362&rft.issue=1&rft.spage=2&rft.epage=16&rft.pages=2-16&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/S0921-5093(03)00582-3&rft_dat=%3Cproquest_cross%3E27817284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27817284&rft_id=info:pmid/&rft_els_id=S0921509303005823&rfr_iscdi=true