3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications

Micro-prosthetics requires the fabrication of mechanically robust and personalized components with sub-millimetric feature accuracy. Three-dimensional (3D) printing technologies have had a major impact on manufacturing such miniaturized devices for biomedical applications; however, biocompatibility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2023-03, Vol.9 (3), p.1285-1295
Hauptverfasser: Milazzo, Mario, Fitzpatrick, Vincent, Owens, Crystal E., Carraretto, Igor M., McKinley, Gareth H., Kaplan, David L., Buehler, Markus J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1295
container_issue 3
container_start_page 1285
container_title ACS biomaterials science & engineering
container_volume 9
creator Milazzo, Mario
Fitzpatrick, Vincent
Owens, Crystal E.
Carraretto, Igor M.
McKinley, Gareth H.
Kaplan, David L.
Buehler, Markus J.
description Micro-prosthetics requires the fabrication of mechanically robust and personalized components with sub-millimetric feature accuracy. Three-dimensional (3D) printing technologies have had a major impact on manufacturing such miniaturized devices for biomedical applications; however, biocompatibility requirements greatly constrain the choice of usable materials. Hydroxyapatite (HA) and its composites have been widely employed to fabricate bone-like structures, especially at the macroscale. In this work, we investigate the rheology, printability, and prosthetic mechanical properties of HA and HA–silk protein composites, focusing on the roles of composition and water content. We correlate key linear and nonlinear shear rheological parameters to geometric outcomes of printing and explain how silk compensates for the inherent brittleness of printed HA components. By increasing ink ductility, the inclusion of silk improves the quality of printed items through two mechanisms: (1) reducing underextrusion by lowering the required elastic modulus and, (2) reducing slumping by increasing the ink yield stress proportional to the modulus. We demonstrate that the elastic modulus and compressive strength of parts fabricated from silk-HA inks are higher than those for rheologically comparable pure-HA inks. We construct a printing map to guide the manufacturing of HA-based inks with excellent final properties, especially for use in biomedical applications for which sub-millimetric features are required.
doi_str_mv 10.1021/acsbiomaterials.2c01357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2781621037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781621037</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-1471131489307c0c85a358d9eb949bbd25f9d48d5d55c895526032325735a9843</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EolXpX4AcuaT1I67tY1UeRSoC8ThHjuMIlyQOtiORf4-rFoS4cNrV6pvZ0QBwgeAMQYzmUvnC2EYG7Yys_QwriAhlR2CMCSOp4Iwf_9pHYOr9FsIIcZpl2SkYkQWnjEIxBk_kKnl0pg2yMLUJQ2Kr5NnU7_P1UDr7OchOBhN0srJNZ33cfFJZl9wb5WznrA9vOhiVLLuuNiqitvVn4KSKsfT0MCfg9eb6ZbVONw-3d6vlJpUxbEhRxhAiKOOCQKag4jTeeSl0ITJRFCWmlSgzXtKSUsUFpXgBCSaYMkKl4BmZgMu9b8zx0Wsf8sZ4petattr2PseMowVGMPYwAWyPxtTeO13lnTONdEOOYL7rNP_TaX7oNCrPD0_6otHlj-67wQiQPRAd8q3tXbuT_2f7BbBDiJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781621037</pqid></control><display><type>article</type><title>3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications</title><source>MEDLINE</source><source>ACS Publications</source><creator>Milazzo, Mario ; Fitzpatrick, Vincent ; Owens, Crystal E. ; Carraretto, Igor M. ; McKinley, Gareth H. ; Kaplan, David L. ; Buehler, Markus J.</creator><creatorcontrib>Milazzo, Mario ; Fitzpatrick, Vincent ; Owens, Crystal E. ; Carraretto, Igor M. ; McKinley, Gareth H. ; Kaplan, David L. ; Buehler, Markus J.</creatorcontrib><description>Micro-prosthetics requires the fabrication of mechanically robust and personalized components with sub-millimetric feature accuracy. Three-dimensional (3D) printing technologies have had a major impact on manufacturing such miniaturized devices for biomedical applications; however, biocompatibility requirements greatly constrain the choice of usable materials. Hydroxyapatite (HA) and its composites have been widely employed to fabricate bone-like structures, especially at the macroscale. In this work, we investigate the rheology, printability, and prosthetic mechanical properties of HA and HA–silk protein composites, focusing on the roles of composition and water content. We correlate key linear and nonlinear shear rheological parameters to geometric outcomes of printing and explain how silk compensates for the inherent brittleness of printed HA components. By increasing ink ductility, the inclusion of silk improves the quality of printed items through two mechanisms: (1) reducing underextrusion by lowering the required elastic modulus and, (2) reducing slumping by increasing the ink yield stress proportional to the modulus. We demonstrate that the elastic modulus and compressive strength of parts fabricated from silk-HA inks are higher than those for rheologically comparable pure-HA inks. We construct a printing map to guide the manufacturing of HA-based inks with excellent final properties, especially for use in biomedical applications for which sub-millimetric features are required.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.2c01357</identifier><identifier>PMID: 36857509</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocompatible Materials ; Characterization, Synthesis, and Modifications ; Durapatite - chemistry ; Elastic Modulus ; Printing, Three-Dimensional ; Silk</subject><ispartof>ACS biomaterials science &amp; engineering, 2023-03, Vol.9 (3), p.1285-1295</ispartof><rights>2023 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-1471131489307c0c85a358d9eb949bbd25f9d48d5d55c895526032325735a9843</citedby><cites>FETCH-LOGICAL-a357t-1471131489307c0c85a358d9eb949bbd25f9d48d5d55c895526032325735a9843</cites><orcidid>0000-0001-8323-2779 ; 0000-0002-0556-1179 ; 0000-0002-9245-7774 ; 0000-0002-7438-0830 ; 0000-0001-8429-5544 ; 0000-0002-4173-9659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.2c01357$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.2c01357$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36857509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Milazzo, Mario</creatorcontrib><creatorcontrib>Fitzpatrick, Vincent</creatorcontrib><creatorcontrib>Owens, Crystal E.</creatorcontrib><creatorcontrib>Carraretto, Igor M.</creatorcontrib><creatorcontrib>McKinley, Gareth H.</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Buehler, Markus J.</creatorcontrib><title>3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>Micro-prosthetics requires the fabrication of mechanically robust and personalized components with sub-millimetric feature accuracy. Three-dimensional (3D) printing technologies have had a major impact on manufacturing such miniaturized devices for biomedical applications; however, biocompatibility requirements greatly constrain the choice of usable materials. Hydroxyapatite (HA) and its composites have been widely employed to fabricate bone-like structures, especially at the macroscale. In this work, we investigate the rheology, printability, and prosthetic mechanical properties of HA and HA–silk protein composites, focusing on the roles of composition and water content. We correlate key linear and nonlinear shear rheological parameters to geometric outcomes of printing and explain how silk compensates for the inherent brittleness of printed HA components. By increasing ink ductility, the inclusion of silk improves the quality of printed items through two mechanisms: (1) reducing underextrusion by lowering the required elastic modulus and, (2) reducing slumping by increasing the ink yield stress proportional to the modulus. We demonstrate that the elastic modulus and compressive strength of parts fabricated from silk-HA inks are higher than those for rheologically comparable pure-HA inks. We construct a printing map to guide the manufacturing of HA-based inks with excellent final properties, especially for use in biomedical applications for which sub-millimetric features are required.</description><subject>Biocompatible Materials</subject><subject>Characterization, Synthesis, and Modifications</subject><subject>Durapatite - chemistry</subject><subject>Elastic Modulus</subject><subject>Printing, Three-Dimensional</subject><subject>Silk</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtPwzAQhC0EolXpX4AcuaT1I67tY1UeRSoC8ThHjuMIlyQOtiORf4-rFoS4cNrV6pvZ0QBwgeAMQYzmUvnC2EYG7Yys_QwriAhlR2CMCSOp4Iwf_9pHYOr9FsIIcZpl2SkYkQWnjEIxBk_kKnl0pg2yMLUJQ2Kr5NnU7_P1UDr7OchOBhN0srJNZ33cfFJZl9wb5WznrA9vOhiVLLuuNiqitvVn4KSKsfT0MCfg9eb6ZbVONw-3d6vlJpUxbEhRxhAiKOOCQKag4jTeeSl0ITJRFCWmlSgzXtKSUsUFpXgBCSaYMkKl4BmZgMu9b8zx0Wsf8sZ4petattr2PseMowVGMPYwAWyPxtTeO13lnTONdEOOYL7rNP_TaX7oNCrPD0_6otHlj-67wQiQPRAd8q3tXbuT_2f7BbBDiJw</recordid><startdate>20230313</startdate><enddate>20230313</enddate><creator>Milazzo, Mario</creator><creator>Fitzpatrick, Vincent</creator><creator>Owens, Crystal E.</creator><creator>Carraretto, Igor M.</creator><creator>McKinley, Gareth H.</creator><creator>Kaplan, David L.</creator><creator>Buehler, Markus J.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8323-2779</orcidid><orcidid>https://orcid.org/0000-0002-0556-1179</orcidid><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid><orcidid>https://orcid.org/0000-0002-7438-0830</orcidid><orcidid>https://orcid.org/0000-0001-8429-5544</orcidid><orcidid>https://orcid.org/0000-0002-4173-9659</orcidid></search><sort><creationdate>20230313</creationdate><title>3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications</title><author>Milazzo, Mario ; Fitzpatrick, Vincent ; Owens, Crystal E. ; Carraretto, Igor M. ; McKinley, Gareth H. ; Kaplan, David L. ; Buehler, Markus J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-1471131489307c0c85a358d9eb949bbd25f9d48d5d55c895526032325735a9843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatible Materials</topic><topic>Characterization, Synthesis, and Modifications</topic><topic>Durapatite - chemistry</topic><topic>Elastic Modulus</topic><topic>Printing, Three-Dimensional</topic><topic>Silk</topic><toplevel>online_resources</toplevel><creatorcontrib>Milazzo, Mario</creatorcontrib><creatorcontrib>Fitzpatrick, Vincent</creatorcontrib><creatorcontrib>Owens, Crystal E.</creatorcontrib><creatorcontrib>Carraretto, Igor M.</creatorcontrib><creatorcontrib>McKinley, Gareth H.</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Buehler, Markus J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milazzo, Mario</au><au>Fitzpatrick, Vincent</au><au>Owens, Crystal E.</au><au>Carraretto, Igor M.</au><au>McKinley, Gareth H.</au><au>Kaplan, David L.</au><au>Buehler, Markus J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2023-03-13</date><risdate>2023</risdate><volume>9</volume><issue>3</issue><spage>1285</spage><epage>1295</epage><pages>1285-1295</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>Micro-prosthetics requires the fabrication of mechanically robust and personalized components with sub-millimetric feature accuracy. Three-dimensional (3D) printing technologies have had a major impact on manufacturing such miniaturized devices for biomedical applications; however, biocompatibility requirements greatly constrain the choice of usable materials. Hydroxyapatite (HA) and its composites have been widely employed to fabricate bone-like structures, especially at the macroscale. In this work, we investigate the rheology, printability, and prosthetic mechanical properties of HA and HA–silk protein composites, focusing on the roles of composition and water content. We correlate key linear and nonlinear shear rheological parameters to geometric outcomes of printing and explain how silk compensates for the inherent brittleness of printed HA components. By increasing ink ductility, the inclusion of silk improves the quality of printed items through two mechanisms: (1) reducing underextrusion by lowering the required elastic modulus and, (2) reducing slumping by increasing the ink yield stress proportional to the modulus. We demonstrate that the elastic modulus and compressive strength of parts fabricated from silk-HA inks are higher than those for rheologically comparable pure-HA inks. We construct a printing map to guide the manufacturing of HA-based inks with excellent final properties, especially for use in biomedical applications for which sub-millimetric features are required.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36857509</pmid><doi>10.1021/acsbiomaterials.2c01357</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8323-2779</orcidid><orcidid>https://orcid.org/0000-0002-0556-1179</orcidid><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid><orcidid>https://orcid.org/0000-0002-7438-0830</orcidid><orcidid>https://orcid.org/0000-0001-8429-5544</orcidid><orcidid>https://orcid.org/0000-0002-4173-9659</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2023-03, Vol.9 (3), p.1285-1295
issn 2373-9878
2373-9878
language eng
recordid cdi_proquest_miscellaneous_2781621037
source MEDLINE; ACS Publications
subjects Biocompatible Materials
Characterization, Synthesis, and Modifications
Durapatite - chemistry
Elastic Modulus
Printing, Three-Dimensional
Silk
title 3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printability%20of%20Silk/Hydroxyapatite%20Composites%20for%20Microprosthetic%20Applications&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Milazzo,%20Mario&rft.date=2023-03-13&rft.volume=9&rft.issue=3&rft.spage=1285&rft.epage=1295&rft.pages=1285-1295&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.2c01357&rft_dat=%3Cproquest_cross%3E2781621037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781621037&rft_id=info:pmid/36857509&rfr_iscdi=true