N‑Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations

The dilemma of employing high-capacity battery materials and maintaining the electrodes’ electrical and mechanical integrity requires a unique binder system design. Polyoxadiazole (POD) is an n-type conductive polymer with excellent electronic and ionic conductive properties, which has acted as a si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-03, Vol.15 (10), p.12946-12956
Hauptverfasser: Sun, Zhaomei, Zhu, Jiadeng, Yang, Chen, Xie, Qibao, Jiang, Yan, Wang, Kaixiang, Jiang, Mengjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12956
container_issue 10
container_start_page 12946
container_title ACS applied materials & interfaces
container_volume 15
creator Sun, Zhaomei
Zhu, Jiadeng
Yang, Chen
Xie, Qibao
Jiang, Yan
Wang, Kaixiang
Jiang, Mengjin
description The dilemma of employing high-capacity battery materials and maintaining the electrodes’ electrical and mechanical integrity requires a unique binder system design. Polyoxadiazole (POD) is an n-type conductive polymer with excellent electronic and ionic conductive properties, which has acted as a silicon binder to achieve high specific capacity and rate performance. However, due to its linear structure, it cannot effectively alleviate the enormous volume change of silicon during the process of lithiation/delithiation, resulting in poor cycle stability. This paper systematically studied metal ion (i.e., Li+, Na+, Mg2+, Ca2+, and Sr2+)-crosslinked PODs as silicon anode binders. The results show that the ionic radius and valence state remarkably influence the polymer’s mechanical properties and the electrolyte’s infiltration. Electrochemical methods have thoroughly explored the effects of different ion crosslinks on the ionic and electronic conductivity of POD in the intrinsic and n-doped states. Attributed to the excellent mechanical strength and good elasticity, Ca-POD can better maintain the overall integrity of the electrode structure and conductive network, significantly improving the cycling stability of the silicon anode. The cell with such binders still retains a capacity of 1770.1 mA h g–1 after 100 cycles at 0.2 C, which is ∼285% that of the cell with the PAALi binder (620.6 mA h g–1). This novel strategy using metal-ion crosslinking polymer binders and the unique experimental design provides a new pathway of high-performance binders for next-generation rechargeable batteries.
doi_str_mv 10.1021/acsami.2c19587
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2781618849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781618849</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-e51438cdd81a62c24046910d517079e63b4077fb2bba73247a003dcab63b8bdb3</originalsourceid><addsrcrecordid>eNp1kMtO3TAQhq2qVbluWVZeVpVy6lsSZ0lTKEgUkIB15MscMHXsg50gTle8Ql-xT0JQTtl1NaP5v_k18yN0QMmCEka_KpNV7xbM0KaU9Tu0TRshCslK9v6tF2IL7eR8T0jFGSk_oi1eyYpRxrbR8_nf5z_X6xXgy-jX8UlZp35HD7iNwY5mcI-z0kPC31ywkDL-DmkaW3zibu-KS0jLmHoVDOAr552JAR-GaCHjo6C0nzi9xm2KOXsXfrlwi3_CoDxu1eBiyHvow1L5DPubuotujo-u25Pi7OLHaXt4VijOyVBASQWXxlpJVcUME0RUDSW2pDWpG6i4FqSul5pprWrORK0I4dYoPSlSW8130efZd5Xiwwh56HqXDXivAsQxd6yWtKJSimZCFzNqXq9OsOxWyfUqrTtKutfUuzn1bpP6tPBp4z3qHuwb_i_mCfgyA9Nidx_HFKZX_-f2AtWWjxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781618849</pqid></control><display><type>article</type><title>N‑Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations</title><source>American Chemical Society Journals</source><creator>Sun, Zhaomei ; Zhu, Jiadeng ; Yang, Chen ; Xie, Qibao ; Jiang, Yan ; Wang, Kaixiang ; Jiang, Mengjin</creator><creatorcontrib>Sun, Zhaomei ; Zhu, Jiadeng ; Yang, Chen ; Xie, Qibao ; Jiang, Yan ; Wang, Kaixiang ; Jiang, Mengjin</creatorcontrib><description>The dilemma of employing high-capacity battery materials and maintaining the electrodes’ electrical and mechanical integrity requires a unique binder system design. Polyoxadiazole (POD) is an n-type conductive polymer with excellent electronic and ionic conductive properties, which has acted as a silicon binder to achieve high specific capacity and rate performance. However, due to its linear structure, it cannot effectively alleviate the enormous volume change of silicon during the process of lithiation/delithiation, resulting in poor cycle stability. This paper systematically studied metal ion (i.e., Li+, Na+, Mg2+, Ca2+, and Sr2+)-crosslinked PODs as silicon anode binders. The results show that the ionic radius and valence state remarkably influence the polymer’s mechanical properties and the electrolyte’s infiltration. Electrochemical methods have thoroughly explored the effects of different ion crosslinks on the ionic and electronic conductivity of POD in the intrinsic and n-doped states. Attributed to the excellent mechanical strength and good elasticity, Ca-POD can better maintain the overall integrity of the electrode structure and conductive network, significantly improving the cycling stability of the silicon anode. The cell with such binders still retains a capacity of 1770.1 mA h g–1 after 100 cycles at 0.2 C, which is ∼285% that of the cell with the PAALi binder (620.6 mA h g–1). This novel strategy using metal-ion crosslinking polymer binders and the unique experimental design provides a new pathway of high-performance binders for next-generation rechargeable batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c19587</identifier><identifier>PMID: 36862122</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-03, Vol.15 (10), p.12946-12956</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-e51438cdd81a62c24046910d517079e63b4077fb2bba73247a003dcab63b8bdb3</citedby><cites>FETCH-LOGICAL-a330t-e51438cdd81a62c24046910d517079e63b4077fb2bba73247a003dcab63b8bdb3</cites><orcidid>0000-0001-7403-712X ; 0000-0003-4709-4115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c19587$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c19587$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36862122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhaomei</creatorcontrib><creatorcontrib>Zhu, Jiadeng</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Xie, Qibao</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Wang, Kaixiang</creatorcontrib><creatorcontrib>Jiang, Mengjin</creatorcontrib><title>N‑Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The dilemma of employing high-capacity battery materials and maintaining the electrodes’ electrical and mechanical integrity requires a unique binder system design. Polyoxadiazole (POD) is an n-type conductive polymer with excellent electronic and ionic conductive properties, which has acted as a silicon binder to achieve high specific capacity and rate performance. However, due to its linear structure, it cannot effectively alleviate the enormous volume change of silicon during the process of lithiation/delithiation, resulting in poor cycle stability. This paper systematically studied metal ion (i.e., Li+, Na+, Mg2+, Ca2+, and Sr2+)-crosslinked PODs as silicon anode binders. The results show that the ionic radius and valence state remarkably influence the polymer’s mechanical properties and the electrolyte’s infiltration. Electrochemical methods have thoroughly explored the effects of different ion crosslinks on the ionic and electronic conductivity of POD in the intrinsic and n-doped states. Attributed to the excellent mechanical strength and good elasticity, Ca-POD can better maintain the overall integrity of the electrode structure and conductive network, significantly improving the cycling stability of the silicon anode. The cell with such binders still retains a capacity of 1770.1 mA h g–1 after 100 cycles at 0.2 C, which is ∼285% that of the cell with the PAALi binder (620.6 mA h g–1). This novel strategy using metal-ion crosslinking polymer binders and the unique experimental design provides a new pathway of high-performance binders for next-generation rechargeable batteries.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtO3TAQhq2qVbluWVZeVpVy6lsSZ0lTKEgUkIB15MscMHXsg50gTle8Ql-xT0JQTtl1NaP5v_k18yN0QMmCEka_KpNV7xbM0KaU9Tu0TRshCslK9v6tF2IL7eR8T0jFGSk_oi1eyYpRxrbR8_nf5z_X6xXgy-jX8UlZp35HD7iNwY5mcI-z0kPC31ywkDL-DmkaW3zibu-KS0jLmHoVDOAr552JAR-GaCHjo6C0nzi9xm2KOXsXfrlwi3_CoDxu1eBiyHvow1L5DPubuotujo-u25Pi7OLHaXt4VijOyVBASQWXxlpJVcUME0RUDSW2pDWpG6i4FqSul5pprWrORK0I4dYoPSlSW8130efZd5Xiwwh56HqXDXivAsQxd6yWtKJSimZCFzNqXq9OsOxWyfUqrTtKutfUuzn1bpP6tPBp4z3qHuwb_i_mCfgyA9Nidx_HFKZX_-f2AtWWjxU</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Sun, Zhaomei</creator><creator>Zhu, Jiadeng</creator><creator>Yang, Chen</creator><creator>Xie, Qibao</creator><creator>Jiang, Yan</creator><creator>Wang, Kaixiang</creator><creator>Jiang, Mengjin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7403-712X</orcidid><orcidid>https://orcid.org/0000-0003-4709-4115</orcidid></search><sort><creationdate>20230315</creationdate><title>N‑Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations</title><author>Sun, Zhaomei ; Zhu, Jiadeng ; Yang, Chen ; Xie, Qibao ; Jiang, Yan ; Wang, Kaixiang ; Jiang, Mengjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-e51438cdd81a62c24046910d517079e63b4077fb2bba73247a003dcab63b8bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhaomei</creatorcontrib><creatorcontrib>Zhu, Jiadeng</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Xie, Qibao</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Wang, Kaixiang</creatorcontrib><creatorcontrib>Jiang, Mengjin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhaomei</au><au>Zhu, Jiadeng</au><au>Yang, Chen</au><au>Xie, Qibao</au><au>Jiang, Yan</au><au>Wang, Kaixiang</au><au>Jiang, Mengjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N‑Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>15</volume><issue>10</issue><spage>12946</spage><epage>12956</epage><pages>12946-12956</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The dilemma of employing high-capacity battery materials and maintaining the electrodes’ electrical and mechanical integrity requires a unique binder system design. Polyoxadiazole (POD) is an n-type conductive polymer with excellent electronic and ionic conductive properties, which has acted as a silicon binder to achieve high specific capacity and rate performance. However, due to its linear structure, it cannot effectively alleviate the enormous volume change of silicon during the process of lithiation/delithiation, resulting in poor cycle stability. This paper systematically studied metal ion (i.e., Li+, Na+, Mg2+, Ca2+, and Sr2+)-crosslinked PODs as silicon anode binders. The results show that the ionic radius and valence state remarkably influence the polymer’s mechanical properties and the electrolyte’s infiltration. Electrochemical methods have thoroughly explored the effects of different ion crosslinks on the ionic and electronic conductivity of POD in the intrinsic and n-doped states. Attributed to the excellent mechanical strength and good elasticity, Ca-POD can better maintain the overall integrity of the electrode structure and conductive network, significantly improving the cycling stability of the silicon anode. The cell with such binders still retains a capacity of 1770.1 mA h g–1 after 100 cycles at 0.2 C, which is ∼285% that of the cell with the PAALi binder (620.6 mA h g–1). This novel strategy using metal-ion crosslinking polymer binders and the unique experimental design provides a new pathway of high-performance binders for next-generation rechargeable batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36862122</pmid><doi>10.1021/acsami.2c19587</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7403-712X</orcidid><orcidid>https://orcid.org/0000-0003-4709-4115</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-03, Vol.15 (10), p.12946-12956
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2781618849
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title N‑Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%E2%80%91Type%20Polyoxadiazole%20Conductive%20Polymer%20Binders%20Derived%20High-Performance%20Silicon%20Anodes%20Enabled%20by%20Crosslinking%20Metal%20Cations&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sun,%20Zhaomei&rft.date=2023-03-15&rft.volume=15&rft.issue=10&rft.spage=12946&rft.epage=12956&rft.pages=12946-12956&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c19587&rft_dat=%3Cproquest_cross%3E2781618849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781618849&rft_id=info:pmid/36862122&rfr_iscdi=true