A comparative analysis of transpiration and bare soil evaporation
Transpiration E^sup v^ and bare soil evaporation E^sup b^ processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content ϑ. For a homogeneous areal distribution of ϑ we use a deterministic model, while for inhomogeneous distributio...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2003-11, Vol.109 (2), p.139-162 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 162 |
---|---|
container_issue | 2 |
container_start_page | 139 |
container_title | Boundary-layer meteorology |
container_volume | 109 |
creator | ACS, Ferenc |
description | Transpiration E^sup v^ and bare soil evaporation E^sup b^ processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content ϑ. For a homogeneous areal distribution of ϑ we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of ϑ are simulated by Monte-Carlo runs assuming normal distributions of ϑ. The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theE^sup v^(ϑ)-^sup E^b(ϑ) differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation A^sup v^(ϑ) and bare soil A^sup b^(ϑ) surfaces differ much less than the E^sup v^(ϑ) and ^sup E^b(ϑ) curves. The results suggest that E^sup v^ is much more non-linearly related to environmental conditions than ^sup E^b. Both E^sup v^ and ^sup E^b depend on the distribution of ϑ, the wetness regime and the parameterization used. With the parameterizations, ^sup E^b showed greater variations than E^sup v^. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/a:1025473221779 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27814708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27814708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-4889d2bc09ac4a730577fca01242eb63a0b67526e07fbbb05fcca4461d3428ca3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFbPXoOgt9j9zGy8hVI_oOBFz8tku4GUNBt300L_e7e0IHqROTyG997A_Ai5ZfSRUS5m-JRESRCcM4DyjEyYApEzCfycTCilRa4Fk5fkKsZ1WoEpOiFVlVm_GTDg2O5chj12-9jGzDfZGLCPQ3twfJ-cVVZjcFn0bZe5HQ7-6FyTiwa76G5OOiWfz4uP-Wu-fH95m1fL3Eoux1xqXa54bWmJViIIqgAai5RxyV1dCKR1AYoXjkJT1zVVjbUoZcFWQnJtUUzJw_HuEPzX1sXRbNpoXddh7_w2Gg46_Ur1v0GmNQiVZkru_gTXfhsSgWhAgJK8BJlCs2PIBh9jcI0ZQrvBsDeMmgN4U5lf4FPj_nQWo8WuSRhtG39qinEtNRXfcg-BUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>737542974</pqid></control><display><type>article</type><title>A comparative analysis of transpiration and bare soil evaporation</title><source>SpringerNature Journals</source><creator>ACS, Ferenc</creator><creatorcontrib>ACS, Ferenc</creatorcontrib><description>Transpiration E^sup v^ and bare soil evaporation E^sup b^ processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content ϑ. For a homogeneous areal distribution of ϑ we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of ϑ are simulated by Monte-Carlo runs assuming normal distributions of ϑ. The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theE^sup v^(ϑ)-^sup E^b(ϑ) differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation A^sup v^(ϑ) and bare soil A^sup b^(ϑ) surfaces differ much less than the E^sup v^(ϑ) and ^sup E^b(ϑ) curves. The results suggest that E^sup v^ is much more non-linearly related to environmental conditions than ^sup E^b. Both E^sup v^ and ^sup E^b depend on the distribution of ϑ, the wetness regime and the parameterization used. With the parameterizations, ^sup E^b showed greater variations than E^sup v^. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1023/a:1025473221779</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agricultural and forest meteorology ; Agronomy. Soil science and plant productions ; Atmospheric forcing ; Biological and medical sciences ; Comparative analysis ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Earth, ocean, space ; Energy balance ; Environmental conditions ; Evaporation ; Exact sciences and technology ; External geophysics ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Meteorology ; Moisture content ; Soil moisture ; Soil surfaces ; Soils ; Transpiration ; Vegetation ; Water balance and requirements. Evapotranspiration</subject><ispartof>Boundary-layer meteorology, 2003-11, Vol.109 (2), p.139-162</ispartof><rights>2004 INIST-CNRS</rights><rights>Kluwer Academic Publishers 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-4889d2bc09ac4a730577fca01242eb63a0b67526e07fbbb05fcca4461d3428ca3</citedby><cites>FETCH-LOGICAL-c424t-4889d2bc09ac4a730577fca01242eb63a0b67526e07fbbb05fcca4461d3428ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15128480$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ACS, Ferenc</creatorcontrib><title>A comparative analysis of transpiration and bare soil evaporation</title><title>Boundary-layer meteorology</title><description>Transpiration E^sup v^ and bare soil evaporation E^sup b^ processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content ϑ. For a homogeneous areal distribution of ϑ we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of ϑ are simulated by Monte-Carlo runs assuming normal distributions of ϑ. The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theE^sup v^(ϑ)-^sup E^b(ϑ) differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation A^sup v^(ϑ) and bare soil A^sup b^(ϑ) surfaces differ much less than the E^sup v^(ϑ) and ^sup E^b(ϑ) curves. The results suggest that E^sup v^ is much more non-linearly related to environmental conditions than ^sup E^b. Both E^sup v^ and ^sup E^b depend on the distribution of ϑ, the wetness regime and the parameterization used. With the parameterizations, ^sup E^b showed greater variations than E^sup v^. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.[PUBLICATION ABSTRACT]</description><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agricultural and forest meteorology</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Atmospheric forcing</subject><subject>Biological and medical sciences</subject><subject>Comparative analysis</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Earth, ocean, space</subject><subject>Energy balance</subject><subject>Environmental conditions</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Meteorology</subject><subject>Moisture content</subject><subject>Soil moisture</subject><subject>Soil surfaces</subject><subject>Soils</subject><subject>Transpiration</subject><subject>Vegetation</subject><subject>Water balance and requirements. Evapotranspiration</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkM1Lw0AQxRdRsFbPXoOgt9j9zGy8hVI_oOBFz8tku4GUNBt300L_e7e0IHqROTyG997A_Ai5ZfSRUS5m-JRESRCcM4DyjEyYApEzCfycTCilRa4Fk5fkKsZ1WoEpOiFVlVm_GTDg2O5chj12-9jGzDfZGLCPQ3twfJ-cVVZjcFn0bZe5HQ7-6FyTiwa76G5OOiWfz4uP-Wu-fH95m1fL3Eoux1xqXa54bWmJViIIqgAai5RxyV1dCKR1AYoXjkJT1zVVjbUoZcFWQnJtUUzJw_HuEPzX1sXRbNpoXddh7_w2Gg46_Ur1v0GmNQiVZkru_gTXfhsSgWhAgJK8BJlCs2PIBh9jcI0ZQrvBsDeMmgN4U5lf4FPj_nQWo8WuSRhtG39qinEtNRXfcg-BUw</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>ACS, Ferenc</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20031101</creationdate><title>A comparative analysis of transpiration and bare soil evaporation</title><author>ACS, Ferenc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-4889d2bc09ac4a730577fca01242eb63a0b67526e07fbbb05fcca4461d3428ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agricultural and forest meteorology</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Atmospheric forcing</topic><topic>Biological and medical sciences</topic><topic>Comparative analysis</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Earth, ocean, space</topic><topic>Energy balance</topic><topic>Environmental conditions</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Meteorology</topic><topic>Moisture content</topic><topic>Soil moisture</topic><topic>Soil surfaces</topic><topic>Soils</topic><topic>Transpiration</topic><topic>Vegetation</topic><topic>Water balance and requirements. Evapotranspiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ACS, Ferenc</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ACS, Ferenc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative analysis of transpiration and bare soil evaporation</atitle><jtitle>Boundary-layer meteorology</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>109</volume><issue>2</issue><spage>139</spage><epage>162</epage><pages>139-162</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>Transpiration E^sup v^ and bare soil evaporation E^sup b^ processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content ϑ. For a homogeneous areal distribution of ϑ we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of ϑ are simulated by Monte-Carlo runs assuming normal distributions of ϑ. The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theE^sup v^(ϑ)-^sup E^b(ϑ) differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation A^sup v^(ϑ) and bare soil A^sup b^(ϑ) surfaces differ much less than the E^sup v^(ϑ) and ^sup E^b(ϑ) curves. The results suggest that E^sup v^ is much more non-linearly related to environmental conditions than ^sup E^b. Both E^sup v^ and ^sup E^b depend on the distribution of ϑ, the wetness regime and the parameterization used. With the parameterizations, ^sup E^b showed greater variations than E^sup v^. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/a:1025473221779</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2003-11, Vol.109 (2), p.139-162 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_miscellaneous_27814708 |
source | SpringerNature Journals |
subjects | Agricultural and forest climatology and meteorology. Irrigation. Drainage Agricultural and forest meteorology Agronomy. Soil science and plant productions Atmospheric forcing Biological and medical sciences Comparative analysis Convection, turbulence, diffusion. Boundary layer structure and dynamics Earth, ocean, space Energy balance Environmental conditions Evaporation Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General agronomy. Plant production Meteorology Moisture content Soil moisture Soil surfaces Soils Transpiration Vegetation Water balance and requirements. Evapotranspiration |
title | A comparative analysis of transpiration and bare soil evaporation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20analysis%20of%20transpiration%20and%20bare%20soil%20evaporation&rft.jtitle=Boundary-layer%20meteorology&rft.au=ACS,%20Ferenc&rft.date=2003-11-01&rft.volume=109&rft.issue=2&rft.spage=139&rft.epage=162&rft.pages=139-162&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1023/a:1025473221779&rft_dat=%3Cproquest_cross%3E27814708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=737542974&rft_id=info:pmid/&rfr_iscdi=true |