Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs

Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2003-07, Vol.150 (6), p.A706-A713
Hauptverfasser: DOYLE, Marc, FUENTES, Yuris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A713
container_issue 6
container_start_page A706
container_title Journal of the Electrochemical Society
container_volume 150
creator DOYLE, Marc
FUENTES, Yuris
description Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capability and energy density over previous generations of thin prismatic cells. Computer simulations of the performance of a specific commercial lithium-ion polymer cell (Sony's UP383562) are used to examine the capacity, energy density, and rate capability attainable by these systems. The current first-generation commercial cells are studied, and their performance is extrapolated to next-generation designs that are shown to achieve even higher capacities and energy densities. Fundamental limits in the energy density attainable by these systems are described.
doi_str_mv 10.1149/1.1569478
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27813768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27813768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3ed3a58c730640df68d621c90909b625e86c32d41509586c72933f0fe55703fd3</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoOI4u_AfZKLjomNs8mi5l8AUDbnRdMmkyE-nLJAXrrzc6RbmLe8_lO2dxELoEsgJg5S2sgIuSFfIILaBkPCsA4BgtCAGaMcHhFJ2F8J4kSFYs0Ne6b4cxGo-Da8dGRdd3AfcWK9y4uHdjm6UPHvpmahO0VTGxE1ZdjV07NE7PDtt7vHe7fWK0GpR2ccKd-YzZznTG_0J_5toEt-vCOTqxqgnmYt5L9PZw_7p-yjYvj8_ru02mKWcxo6amiktdUCIYqa2QtchBlyTNVuTcSKFpXjPgpOTpLvKSUkus4bwg1NZ0ia4PuYPvP0YTYtW6oE3TqM70Y6jyQgIthEzgzQHUvg_BG1sN3rXKTxWQ6qfdCqq53cRezaEqaNVYrzrtwr-BSSGJEPQbjnl68Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27813768</pqid></control><display><type>article</type><title>Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs</title><source>IOP Publishing Journals</source><creator>DOYLE, Marc ; FUENTES, Yuris</creator><creatorcontrib>DOYLE, Marc ; FUENTES, Yuris</creatorcontrib><description>Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capability and energy density over previous generations of thin prismatic cells. Computer simulations of the performance of a specific commercial lithium-ion polymer cell (Sony's UP383562) are used to examine the capacity, energy density, and rate capability attainable by these systems. The current first-generation commercial cells are studied, and their performance is extrapolated to next-generation designs that are shown to achieve even higher capacities and energy densities. Fundamental limits in the energy density attainable by these systems are described.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.1569478</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology</subject><ispartof>Journal of the Electrochemical Society, 2003-07, Vol.150 (6), p.A706-A713</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3ed3a58c730640df68d621c90909b625e86c32d41509586c72933f0fe55703fd3</citedby><cites>FETCH-LOGICAL-c354t-3ed3a58c730640df68d621c90909b625e86c32d41509586c72933f0fe55703fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14868066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DOYLE, Marc</creatorcontrib><creatorcontrib>FUENTES, Yuris</creatorcontrib><title>Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs</title><title>Journal of the Electrochemical Society</title><description>Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capability and energy density over previous generations of thin prismatic cells. Computer simulations of the performance of a specific commercial lithium-ion polymer cell (Sony's UP383562) are used to examine the capacity, energy density, and rate capability attainable by these systems. The current first-generation commercial cells are studied, and their performance is extrapolated to next-generation designs that are shown to achieve even higher capacities and energy densities. Fundamental limits in the energy density attainable by these systems are described.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLxDAUhYMoOI4u_AfZKLjomNs8mi5l8AUDbnRdMmkyE-nLJAXrrzc6RbmLe8_lO2dxELoEsgJg5S2sgIuSFfIILaBkPCsA4BgtCAGaMcHhFJ2F8J4kSFYs0Ne6b4cxGo-Da8dGRdd3AfcWK9y4uHdjm6UPHvpmahO0VTGxE1ZdjV07NE7PDtt7vHe7fWK0GpR2ccKd-YzZznTG_0J_5toEt-vCOTqxqgnmYt5L9PZw_7p-yjYvj8_ru02mKWcxo6amiktdUCIYqa2QtchBlyTNVuTcSKFpXjPgpOTpLvKSUkus4bwg1NZ0ia4PuYPvP0YTYtW6oE3TqM70Y6jyQgIthEzgzQHUvg_BG1sN3rXKTxWQ6qfdCqq53cRezaEqaNVYrzrtwr-BSSGJEPQbjnl68Q</recordid><startdate>200307</startdate><enddate>200307</enddate><creator>DOYLE, Marc</creator><creator>FUENTES, Yuris</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200307</creationdate><title>Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs</title><author>DOYLE, Marc ; FUENTES, Yuris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3ed3a58c730640df68d621c90909b625e86c32d41509586c72933f0fe55703fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOYLE, Marc</creatorcontrib><creatorcontrib>FUENTES, Yuris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOYLE, Marc</au><au>FUENTES, Yuris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2003-07</date><risdate>2003</risdate><volume>150</volume><issue>6</issue><spage>A706</spage><epage>A713</epage><pages>A706-A713</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capability and energy density over previous generations of thin prismatic cells. Computer simulations of the performance of a specific commercial lithium-ion polymer cell (Sony's UP383562) are used to examine the capacity, energy density, and rate capability attainable by these systems. The current first-generation commercial cells are studied, and their performance is extrapolated to next-generation designs that are shown to achieve even higher capacities and energy densities. Fundamental limits in the energy density attainable by these systems are described.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.1569478</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2003-07, Vol.150 (6), p.A706-A713
issn 0013-4651
1945-7111
language eng
recordid cdi_proquest_miscellaneous_27813768
source IOP Publishing Journals
subjects Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
title Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulations%20of%20a%20lithium-ion%20polymer%20battery%20and%20implications%20for%20higher%20capacity%20next-generation%20battery%20designs&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=DOYLE,%20Marc&rft.date=2003-07&rft.volume=150&rft.issue=6&rft.spage=A706&rft.epage=A713&rft.pages=A706-A713&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.1569478&rft_dat=%3Cproquest_cross%3E27813768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27813768&rft_id=info:pmid/&rfr_iscdi=true