Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs
Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capabili...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2003-07, Vol.150 (6), p.A706-A713 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A713 |
---|---|
container_issue | 6 |
container_start_page | A706 |
container_title | Journal of the Electrochemical Society |
container_volume | 150 |
creator | DOYLE, Marc FUENTES, Yuris |
description | Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capability and energy density over previous generations of thin prismatic cells. Computer simulations of the performance of a specific commercial lithium-ion polymer cell (Sony's UP383562) are used to examine the capacity, energy density, and rate capability attainable by these systems. The current first-generation commercial cells are studied, and their performance is extrapolated to next-generation designs that are shown to achieve even higher capacities and energy densities. Fundamental limits in the energy density attainable by these systems are described. |
doi_str_mv | 10.1149/1.1569478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27813768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27813768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3ed3a58c730640df68d621c90909b625e86c32d41509586c72933f0fe55703fd3</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoOI4u_AfZKLjomNs8mi5l8AUDbnRdMmkyE-nLJAXrrzc6RbmLe8_lO2dxELoEsgJg5S2sgIuSFfIILaBkPCsA4BgtCAGaMcHhFJ2F8J4kSFYs0Ne6b4cxGo-Da8dGRdd3AfcWK9y4uHdjm6UPHvpmahO0VTGxE1ZdjV07NE7PDtt7vHe7fWK0GpR2ccKd-YzZznTG_0J_5toEt-vCOTqxqgnmYt5L9PZw_7p-yjYvj8_ru02mKWcxo6amiktdUCIYqa2QtchBlyTNVuTcSKFpXjPgpOTpLvKSUkus4bwg1NZ0ia4PuYPvP0YTYtW6oE3TqM70Y6jyQgIthEzgzQHUvg_BG1sN3rXKTxWQ6qfdCqq53cRezaEqaNVYrzrtwr-BSSGJEPQbjnl68Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27813768</pqid></control><display><type>article</type><title>Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs</title><source>IOP Publishing Journals</source><creator>DOYLE, Marc ; FUENTES, Yuris</creator><creatorcontrib>DOYLE, Marc ; FUENTES, Yuris</creatorcontrib><description>Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capability and energy density over previous generations of thin prismatic cells. Computer simulations of the performance of a specific commercial lithium-ion polymer cell (Sony's UP383562) are used to examine the capacity, energy density, and rate capability attainable by these systems. The current first-generation commercial cells are studied, and their performance is extrapolated to next-generation designs that are shown to achieve even higher capacities and energy densities. Fundamental limits in the energy density attainable by these systems are described.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.1569478</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology</subject><ispartof>Journal of the Electrochemical Society, 2003-07, Vol.150 (6), p.A706-A713</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3ed3a58c730640df68d621c90909b625e86c32d41509586c72933f0fe55703fd3</citedby><cites>FETCH-LOGICAL-c354t-3ed3a58c730640df68d621c90909b625e86c32d41509586c72933f0fe55703fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14868066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DOYLE, Marc</creatorcontrib><creatorcontrib>FUENTES, Yuris</creatorcontrib><title>Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs</title><title>Journal of the Electrochemical Society</title><description>Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capability and energy density over previous generations of thin prismatic cells. Computer simulations of the performance of a specific commercial lithium-ion polymer cell (Sony's UP383562) are used to examine the capacity, energy density, and rate capability attainable by these systems. The current first-generation commercial cells are studied, and their performance is extrapolated to next-generation designs that are shown to achieve even higher capacities and energy densities. Fundamental limits in the energy density attainable by these systems are described.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLxDAUhYMoOI4u_AfZKLjomNs8mi5l8AUDbnRdMmkyE-nLJAXrrzc6RbmLe8_lO2dxELoEsgJg5S2sgIuSFfIILaBkPCsA4BgtCAGaMcHhFJ2F8J4kSFYs0Ne6b4cxGo-Da8dGRdd3AfcWK9y4uHdjm6UPHvpmahO0VTGxE1ZdjV07NE7PDtt7vHe7fWK0GpR2ccKd-YzZznTG_0J_5toEt-vCOTqxqgnmYt5L9PZw_7p-yjYvj8_ru02mKWcxo6amiktdUCIYqa2QtchBlyTNVuTcSKFpXjPgpOTpLvKSUkus4bwg1NZ0ia4PuYPvP0YTYtW6oE3TqM70Y6jyQgIthEzgzQHUvg_BG1sN3rXKTxWQ6qfdCqq53cRezaEqaNVYrzrtwr-BSSGJEPQbjnl68Q</recordid><startdate>200307</startdate><enddate>200307</enddate><creator>DOYLE, Marc</creator><creator>FUENTES, Yuris</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200307</creationdate><title>Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs</title><author>DOYLE, Marc ; FUENTES, Yuris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3ed3a58c730640df68d621c90909b625e86c32d41509586c72933f0fe55703fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOYLE, Marc</creatorcontrib><creatorcontrib>FUENTES, Yuris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOYLE, Marc</au><au>FUENTES, Yuris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2003-07</date><risdate>2003</risdate><volume>150</volume><issue>6</issue><spage>A706</spage><epage>A713</epage><pages>A706-A713</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Most commercial lithium-ion polymer cells differ from traditional lithium-ion cells only in their cell construction and packaging. Their use of thinner separators, immobilized gel electrolyte solutions, and metallized plastic laminated packaging potentially allow an improvement in both rate capability and energy density over previous generations of thin prismatic cells. Computer simulations of the performance of a specific commercial lithium-ion polymer cell (Sony's UP383562) are used to examine the capacity, energy density, and rate capability attainable by these systems. The current first-generation commercial cells are studied, and their performance is extrapolated to next-generation designs that are shown to achieve even higher capacities and energy densities. Fundamental limits in the energy density attainable by these systems are described.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.1569478</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2003-07, Vol.150 (6), p.A706-A713 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_proquest_miscellaneous_27813768 |
source | IOP Publishing Journals |
subjects | Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology |
title | Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulations%20of%20a%20lithium-ion%20polymer%20battery%20and%20implications%20for%20higher%20capacity%20next-generation%20battery%20designs&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=DOYLE,%20Marc&rft.date=2003-07&rft.volume=150&rft.issue=6&rft.spage=A706&rft.epage=A713&rft.pages=A706-A713&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.1569478&rft_dat=%3Cproquest_cross%3E27813768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27813768&rft_id=info:pmid/&rfr_iscdi=true |