Charge transport in polycrystalline titanium dioxide

This work reports semiconducting properties of undoped polycrystalline TiO 2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O 2) between 10 Pa and 70 kPa and temperature 1173–1273 K. The w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physics and chemistry of solids 2003-07, Vol.64 (7), p.1089-1095
Hauptverfasser: Bak, T., Burg, T., Kang, S.-J.L., Nowotny, J., Rekas, M., Sheppard, L., Sorrell, C.C., Vance, E.R., Yoshida, Y., Yamawaki, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1095
container_issue 7
container_start_page 1089
container_title The Journal of physics and chemistry of solids
container_volume 64
creator Bak, T.
Burg, T.
Kang, S.-J.L.
Nowotny, J.
Rekas, M.
Sheppard, L.
Sorrell, C.C.
Vance, E.R.
Yoshida, Y.
Yamawaki, M.
description This work reports semiconducting properties of undoped polycrystalline TiO 2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O 2) between 10 Pa and 70 kPa and temperature 1173–1273 K. The width of the band gap, determined from the minimum of EC, is equal to 3.055±0.012 eV. It was found that the apparent concentration of negatively charged defects, involving both acceptor-type aliovalent ions and Ti vacancies, increases with temperature from 0.6 at% at 1173 K to the level of 0.9–1.4 at% at 1273 K. This effect is considered in terms of Schottky-type defects. It was observed that the minimum of EC at the n–p transition is lower than that for TiO 2 single crystal thus suggesting that grain boundaries are responsible for the formation of conductivity weak links.
doi_str_mv 10.1016/S0022-3697(03)00005-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27808280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022369703000052</els_id><sourcerecordid>27808280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-ac2e1b514b7bdd252787d09b8f7d846b99893f6550f0d30565380ce3a383a47c3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwE5CygGAInO04tieEKr6kSgzAbDm2A0ZpEmwXtf-epK1g5JYb7rn3dA9CpxiuMODy-gWAkJyWkl8AvYShWE720AQLLnPCGN1Hk1_kEB3F-DkyWOIJKmYfOry7LAXdxr4LKfNt1nfN2oR1TLppfDsMfdKtXy4y67uVt-4YHdS6ie5k16fo7f7udfaYz58fnma389wUtEi5NsThiuGi4pW1hBEuuAVZiZpbUZSVlELSumQMarAUWMmoAOOopoLqghs6Refb3D50X0sXk1r4aFzT6NZ1y6iGQBBEwACyLWhCF2NwteqDX-iwVhjU6EhtHKlRgAKqNo4UGfbOdgd0NLqpBwnGx7_lgpdMlGP-zZZzw7ff3gUVjXetcdYHZ5Kynf_n0g8gRXo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27808280</pqid></control><display><type>article</type><title>Charge transport in polycrystalline titanium dioxide</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bak, T. ; Burg, T. ; Kang, S.-J.L. ; Nowotny, J. ; Rekas, M. ; Sheppard, L. ; Sorrell, C.C. ; Vance, E.R. ; Yoshida, Y. ; Yamawaki, M.</creator><creatorcontrib>Bak, T. ; Burg, T. ; Kang, S.-J.L. ; Nowotny, J. ; Rekas, M. ; Sheppard, L. ; Sorrell, C.C. ; Vance, E.R. ; Yoshida, Y. ; Yamawaki, M.</creatorcontrib><description>This work reports semiconducting properties of undoped polycrystalline TiO 2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O 2) between 10 Pa and 70 kPa and temperature 1173–1273 K. The width of the band gap, determined from the minimum of EC, is equal to 3.055±0.012 eV. It was found that the apparent concentration of negatively charged defects, involving both acceptor-type aliovalent ions and Ti vacancies, increases with temperature from 0.6 at% at 1173 K to the level of 0.9–1.4 at% at 1273 K. This effect is considered in terms of Schottky-type defects. It was observed that the minimum of EC at the n–p transition is lower than that for TiO 2 single crystal thus suggesting that grain boundaries are responsible for the formation of conductivity weak links.</description><identifier>ISSN: 0022-3697</identifier><identifier>EISSN: 1879-2553</identifier><identifier>DOI: 10.1016/S0022-3697(03)00005-2</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conductivity of specific materials ; Conductivity phenomena in semiconductors and insulators ; D. Defects ; D. Electrical conductivity ; D. Transport properites ; Defects and impurities in crystals; microstructure ; Electronic transport in condensed matter ; Exact sciences and technology ; Other crystalline inorganic semiconductors ; Physics ; Point defects (vacancies, interstitials, color centers, etc.) and defect clusters ; Structure of solids and liquids; crystallography ; Thermoelectric and thermomagnetic effects</subject><ispartof>The Journal of physics and chemistry of solids, 2003-07, Vol.64 (7), p.1089-1095</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-ac2e1b514b7bdd252787d09b8f7d846b99893f6550f0d30565380ce3a383a47c3</citedby><cites>FETCH-LOGICAL-c434t-ac2e1b514b7bdd252787d09b8f7d846b99893f6550f0d30565380ce3a383a47c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-3697(03)00005-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14765860$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bak, T.</creatorcontrib><creatorcontrib>Burg, T.</creatorcontrib><creatorcontrib>Kang, S.-J.L.</creatorcontrib><creatorcontrib>Nowotny, J.</creatorcontrib><creatorcontrib>Rekas, M.</creatorcontrib><creatorcontrib>Sheppard, L.</creatorcontrib><creatorcontrib>Sorrell, C.C.</creatorcontrib><creatorcontrib>Vance, E.R.</creatorcontrib><creatorcontrib>Yoshida, Y.</creatorcontrib><creatorcontrib>Yamawaki, M.</creatorcontrib><title>Charge transport in polycrystalline titanium dioxide</title><title>The Journal of physics and chemistry of solids</title><description>This work reports semiconducting properties of undoped polycrystalline TiO 2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O 2) between 10 Pa and 70 kPa and temperature 1173–1273 K. The width of the band gap, determined from the minimum of EC, is equal to 3.055±0.012 eV. It was found that the apparent concentration of negatively charged defects, involving both acceptor-type aliovalent ions and Ti vacancies, increases with temperature from 0.6 at% at 1173 K to the level of 0.9–1.4 at% at 1273 K. This effect is considered in terms of Schottky-type defects. It was observed that the minimum of EC at the n–p transition is lower than that for TiO 2 single crystal thus suggesting that grain boundaries are responsible for the formation of conductivity weak links.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conductivity of specific materials</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>D. Defects</subject><subject>D. Electrical conductivity</subject><subject>D. Transport properites</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>Other crystalline inorganic semiconductors</subject><subject>Physics</subject><subject>Point defects (vacancies, interstitials, color centers, etc.) and defect clusters</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Thermoelectric and thermomagnetic effects</subject><issn>0022-3697</issn><issn>1879-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwE5CygGAInO04tieEKr6kSgzAbDm2A0ZpEmwXtf-epK1g5JYb7rn3dA9CpxiuMODy-gWAkJyWkl8AvYShWE720AQLLnPCGN1Hk1_kEB3F-DkyWOIJKmYfOry7LAXdxr4LKfNt1nfN2oR1TLppfDsMfdKtXy4y67uVt-4YHdS6ie5k16fo7f7udfaYz58fnma389wUtEi5NsThiuGi4pW1hBEuuAVZiZpbUZSVlELSumQMarAUWMmoAOOopoLqghs6Refb3D50X0sXk1r4aFzT6NZ1y6iGQBBEwACyLWhCF2NwteqDX-iwVhjU6EhtHKlRgAKqNo4UGfbOdgd0NLqpBwnGx7_lgpdMlGP-zZZzw7ff3gUVjXetcdYHZ5Kynf_n0g8gRXo1</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Bak, T.</creator><creator>Burg, T.</creator><creator>Kang, S.-J.L.</creator><creator>Nowotny, J.</creator><creator>Rekas, M.</creator><creator>Sheppard, L.</creator><creator>Sorrell, C.C.</creator><creator>Vance, E.R.</creator><creator>Yoshida, Y.</creator><creator>Yamawaki, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030701</creationdate><title>Charge transport in polycrystalline titanium dioxide</title><author>Bak, T. ; Burg, T. ; Kang, S.-J.L. ; Nowotny, J. ; Rekas, M. ; Sheppard, L. ; Sorrell, C.C. ; Vance, E.R. ; Yoshida, Y. ; Yamawaki, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-ac2e1b514b7bdd252787d09b8f7d846b99893f6550f0d30565380ce3a383a47c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conductivity of specific materials</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>D. Defects</topic><topic>D. Electrical conductivity</topic><topic>D. Transport properites</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>Other crystalline inorganic semiconductors</topic><topic>Physics</topic><topic>Point defects (vacancies, interstitials, color centers, etc.) and defect clusters</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Thermoelectric and thermomagnetic effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bak, T.</creatorcontrib><creatorcontrib>Burg, T.</creatorcontrib><creatorcontrib>Kang, S.-J.L.</creatorcontrib><creatorcontrib>Nowotny, J.</creatorcontrib><creatorcontrib>Rekas, M.</creatorcontrib><creatorcontrib>Sheppard, L.</creatorcontrib><creatorcontrib>Sorrell, C.C.</creatorcontrib><creatorcontrib>Vance, E.R.</creatorcontrib><creatorcontrib>Yoshida, Y.</creatorcontrib><creatorcontrib>Yamawaki, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>The Journal of physics and chemistry of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bak, T.</au><au>Burg, T.</au><au>Kang, S.-J.L.</au><au>Nowotny, J.</au><au>Rekas, M.</au><au>Sheppard, L.</au><au>Sorrell, C.C.</au><au>Vance, E.R.</au><au>Yoshida, Y.</au><au>Yamawaki, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge transport in polycrystalline titanium dioxide</atitle><jtitle>The Journal of physics and chemistry of solids</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>64</volume><issue>7</issue><spage>1089</spage><epage>1095</epage><pages>1089-1095</pages><issn>0022-3697</issn><eissn>1879-2553</eissn><abstract>This work reports semiconducting properties of undoped polycrystalline TiO 2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O 2) between 10 Pa and 70 kPa and temperature 1173–1273 K. The width of the band gap, determined from the minimum of EC, is equal to 3.055±0.012 eV. It was found that the apparent concentration of negatively charged defects, involving both acceptor-type aliovalent ions and Ti vacancies, increases with temperature from 0.6 at% at 1173 K to the level of 0.9–1.4 at% at 1273 K. This effect is considered in terms of Schottky-type defects. It was observed that the minimum of EC at the n–p transition is lower than that for TiO 2 single crystal thus suggesting that grain boundaries are responsible for the formation of conductivity weak links.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0022-3697(03)00005-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3697
ispartof The Journal of physics and chemistry of solids, 2003-07, Vol.64 (7), p.1089-1095
issn 0022-3697
1879-2553
language eng
recordid cdi_proquest_miscellaneous_27808280
source Elsevier ScienceDirect Journals Complete
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Conductivity of specific materials
Conductivity phenomena in semiconductors and insulators
D. Defects
D. Electrical conductivity
D. Transport properites
Defects and impurities in crystals
microstructure
Electronic transport in condensed matter
Exact sciences and technology
Other crystalline inorganic semiconductors
Physics
Point defects (vacancies, interstitials, color centers, etc.) and defect clusters
Structure of solids and liquids
crystallography
Thermoelectric and thermomagnetic effects
title Charge transport in polycrystalline titanium dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20transport%20in%20polycrystalline%20titanium%20dioxide&rft.jtitle=The%20Journal%20of%20physics%20and%20chemistry%20of%20solids&rft.au=Bak,%20T.&rft.date=2003-07-01&rft.volume=64&rft.issue=7&rft.spage=1089&rft.epage=1095&rft.pages=1089-1095&rft.issn=0022-3697&rft.eissn=1879-2553&rft_id=info:doi/10.1016/S0022-3697(03)00005-2&rft_dat=%3Cproquest_cross%3E27808280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27808280&rft_id=info:pmid/&rft_els_id=S0022369703000052&rfr_iscdi=true