Charge transport in polycrystalline titanium dioxide
This work reports semiconducting properties of undoped polycrystalline TiO 2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O 2) between 10 Pa and 70 kPa and temperature 1173–1273 K. The w...
Gespeichert in:
Veröffentlicht in: | The Journal of physics and chemistry of solids 2003-07, Vol.64 (7), p.1089-1095 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1095 |
---|---|
container_issue | 7 |
container_start_page | 1089 |
container_title | The Journal of physics and chemistry of solids |
container_volume | 64 |
creator | Bak, T. Burg, T. Kang, S.-J.L. Nowotny, J. Rekas, M. Sheppard, L. Sorrell, C.C. Vance, E.R. Yoshida, Y. Yamawaki, M. |
description | This work reports semiconducting properties of undoped polycrystalline TiO
2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O
2) between 10
Pa and 70
kPa and temperature 1173–1273
K. The width of the band gap, determined from the minimum of EC, is equal to 3.055±0.012
eV. It was found that the apparent concentration of negatively charged defects, involving both acceptor-type aliovalent ions and Ti vacancies, increases with temperature from 0.6 at% at 1173
K to the level of 0.9–1.4 at% at 1273
K. This effect is considered in terms of Schottky-type defects. It was observed that the minimum of EC at the n–p transition is lower than that for TiO
2 single crystal thus suggesting that grain boundaries are responsible for the formation of conductivity weak links. |
doi_str_mv | 10.1016/S0022-3697(03)00005-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27808280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022369703000052</els_id><sourcerecordid>27808280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-ac2e1b514b7bdd252787d09b8f7d846b99893f6550f0d30565380ce3a383a47c3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwE5CygGAInO04tieEKr6kSgzAbDm2A0ZpEmwXtf-epK1g5JYb7rn3dA9CpxiuMODy-gWAkJyWkl8AvYShWE720AQLLnPCGN1Hk1_kEB3F-DkyWOIJKmYfOry7LAXdxr4LKfNt1nfN2oR1TLppfDsMfdKtXy4y67uVt-4YHdS6ie5k16fo7f7udfaYz58fnma389wUtEi5NsThiuGi4pW1hBEuuAVZiZpbUZSVlELSumQMarAUWMmoAOOopoLqghs6Refb3D50X0sXk1r4aFzT6NZ1y6iGQBBEwACyLWhCF2NwteqDX-iwVhjU6EhtHKlRgAKqNo4UGfbOdgd0NLqpBwnGx7_lgpdMlGP-zZZzw7ff3gUVjXetcdYHZ5Kynf_n0g8gRXo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27808280</pqid></control><display><type>article</type><title>Charge transport in polycrystalline titanium dioxide</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bak, T. ; Burg, T. ; Kang, S.-J.L. ; Nowotny, J. ; Rekas, M. ; Sheppard, L. ; Sorrell, C.C. ; Vance, E.R. ; Yoshida, Y. ; Yamawaki, M.</creator><creatorcontrib>Bak, T. ; Burg, T. ; Kang, S.-J.L. ; Nowotny, J. ; Rekas, M. ; Sheppard, L. ; Sorrell, C.C. ; Vance, E.R. ; Yoshida, Y. ; Yamawaki, M.</creatorcontrib><description>This work reports semiconducting properties of undoped polycrystalline TiO
2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O
2) between 10
Pa and 70
kPa and temperature 1173–1273
K. The width of the band gap, determined from the minimum of EC, is equal to 3.055±0.012
eV. It was found that the apparent concentration of negatively charged defects, involving both acceptor-type aliovalent ions and Ti vacancies, increases with temperature from 0.6 at% at 1173
K to the level of 0.9–1.4 at% at 1273
K. This effect is considered in terms of Schottky-type defects. It was observed that the minimum of EC at the n–p transition is lower than that for TiO
2 single crystal thus suggesting that grain boundaries are responsible for the formation of conductivity weak links.</description><identifier>ISSN: 0022-3697</identifier><identifier>EISSN: 1879-2553</identifier><identifier>DOI: 10.1016/S0022-3697(03)00005-2</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conductivity of specific materials ; Conductivity phenomena in semiconductors and insulators ; D. Defects ; D. Electrical conductivity ; D. Transport properites ; Defects and impurities in crystals; microstructure ; Electronic transport in condensed matter ; Exact sciences and technology ; Other crystalline inorganic semiconductors ; Physics ; Point defects (vacancies, interstitials, color centers, etc.) and defect clusters ; Structure of solids and liquids; crystallography ; Thermoelectric and thermomagnetic effects</subject><ispartof>The Journal of physics and chemistry of solids, 2003-07, Vol.64 (7), p.1089-1095</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-ac2e1b514b7bdd252787d09b8f7d846b99893f6550f0d30565380ce3a383a47c3</citedby><cites>FETCH-LOGICAL-c434t-ac2e1b514b7bdd252787d09b8f7d846b99893f6550f0d30565380ce3a383a47c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-3697(03)00005-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14765860$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bak, T.</creatorcontrib><creatorcontrib>Burg, T.</creatorcontrib><creatorcontrib>Kang, S.-J.L.</creatorcontrib><creatorcontrib>Nowotny, J.</creatorcontrib><creatorcontrib>Rekas, M.</creatorcontrib><creatorcontrib>Sheppard, L.</creatorcontrib><creatorcontrib>Sorrell, C.C.</creatorcontrib><creatorcontrib>Vance, E.R.</creatorcontrib><creatorcontrib>Yoshida, Y.</creatorcontrib><creatorcontrib>Yamawaki, M.</creatorcontrib><title>Charge transport in polycrystalline titanium dioxide</title><title>The Journal of physics and chemistry of solids</title><description>This work reports semiconducting properties of undoped polycrystalline TiO
2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O
2) between 10
Pa and 70
kPa and temperature 1173–1273
K. The width of the band gap, determined from the minimum of EC, is equal to 3.055±0.012
eV. It was found that the apparent concentration of negatively charged defects, involving both acceptor-type aliovalent ions and Ti vacancies, increases with temperature from 0.6 at% at 1173
K to the level of 0.9–1.4 at% at 1273
K. This effect is considered in terms of Schottky-type defects. It was observed that the minimum of EC at the n–p transition is lower than that for TiO
2 single crystal thus suggesting that grain boundaries are responsible for the formation of conductivity weak links.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conductivity of specific materials</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>D. Defects</subject><subject>D. Electrical conductivity</subject><subject>D. Transport properites</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>Other crystalline inorganic semiconductors</subject><subject>Physics</subject><subject>Point defects (vacancies, interstitials, color centers, etc.) and defect clusters</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Thermoelectric and thermomagnetic effects</subject><issn>0022-3697</issn><issn>1879-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwE5CygGAInO04tieEKr6kSgzAbDm2A0ZpEmwXtf-epK1g5JYb7rn3dA9CpxiuMODy-gWAkJyWkl8AvYShWE720AQLLnPCGN1Hk1_kEB3F-DkyWOIJKmYfOry7LAXdxr4LKfNt1nfN2oR1TLppfDsMfdKtXy4y67uVt-4YHdS6ie5k16fo7f7udfaYz58fnma389wUtEi5NsThiuGi4pW1hBEuuAVZiZpbUZSVlELSumQMarAUWMmoAOOopoLqghs6Refb3D50X0sXk1r4aFzT6NZ1y6iGQBBEwACyLWhCF2NwteqDX-iwVhjU6EhtHKlRgAKqNo4UGfbOdgd0NLqpBwnGx7_lgpdMlGP-zZZzw7ff3gUVjXetcdYHZ5Kynf_n0g8gRXo1</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Bak, T.</creator><creator>Burg, T.</creator><creator>Kang, S.-J.L.</creator><creator>Nowotny, J.</creator><creator>Rekas, M.</creator><creator>Sheppard, L.</creator><creator>Sorrell, C.C.</creator><creator>Vance, E.R.</creator><creator>Yoshida, Y.</creator><creator>Yamawaki, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030701</creationdate><title>Charge transport in polycrystalline titanium dioxide</title><author>Bak, T. ; Burg, T. ; Kang, S.-J.L. ; Nowotny, J. ; Rekas, M. ; Sheppard, L. ; Sorrell, C.C. ; Vance, E.R. ; Yoshida, Y. ; Yamawaki, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-ac2e1b514b7bdd252787d09b8f7d846b99893f6550f0d30565380ce3a383a47c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conductivity of specific materials</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>D. Defects</topic><topic>D. Electrical conductivity</topic><topic>D. Transport properites</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>Other crystalline inorganic semiconductors</topic><topic>Physics</topic><topic>Point defects (vacancies, interstitials, color centers, etc.) and defect clusters</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Thermoelectric and thermomagnetic effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bak, T.</creatorcontrib><creatorcontrib>Burg, T.</creatorcontrib><creatorcontrib>Kang, S.-J.L.</creatorcontrib><creatorcontrib>Nowotny, J.</creatorcontrib><creatorcontrib>Rekas, M.</creatorcontrib><creatorcontrib>Sheppard, L.</creatorcontrib><creatorcontrib>Sorrell, C.C.</creatorcontrib><creatorcontrib>Vance, E.R.</creatorcontrib><creatorcontrib>Yoshida, Y.</creatorcontrib><creatorcontrib>Yamawaki, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>The Journal of physics and chemistry of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bak, T.</au><au>Burg, T.</au><au>Kang, S.-J.L.</au><au>Nowotny, J.</au><au>Rekas, M.</au><au>Sheppard, L.</au><au>Sorrell, C.C.</au><au>Vance, E.R.</au><au>Yoshida, Y.</au><au>Yamawaki, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge transport in polycrystalline titanium dioxide</atitle><jtitle>The Journal of physics and chemistry of solids</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>64</volume><issue>7</issue><spage>1089</spage><epage>1095</epage><pages>1089-1095</pages><issn>0022-3697</issn><eissn>1879-2553</eissn><abstract>This work reports semiconducting properties of undoped polycrystalline TiO
2 studied using the measurements of the electrical conductivity (EC) and thermopower as a function of oxygen partial pressure and temperature in the ranges of p(O
2) between 10
Pa and 70
kPa and temperature 1173–1273
K. The width of the band gap, determined from the minimum of EC, is equal to 3.055±0.012
eV. It was found that the apparent concentration of negatively charged defects, involving both acceptor-type aliovalent ions and Ti vacancies, increases with temperature from 0.6 at% at 1173
K to the level of 0.9–1.4 at% at 1273
K. This effect is considered in terms of Schottky-type defects. It was observed that the minimum of EC at the n–p transition is lower than that for TiO
2 single crystal thus suggesting that grain boundaries are responsible for the formation of conductivity weak links.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0022-3697(03)00005-2</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3697 |
ispartof | The Journal of physics and chemistry of solids, 2003-07, Vol.64 (7), p.1089-1095 |
issn | 0022-3697 1879-2553 |
language | eng |
recordid | cdi_proquest_miscellaneous_27808280 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Conductivity of specific materials Conductivity phenomena in semiconductors and insulators D. Defects D. Electrical conductivity D. Transport properites Defects and impurities in crystals microstructure Electronic transport in condensed matter Exact sciences and technology Other crystalline inorganic semiconductors Physics Point defects (vacancies, interstitials, color centers, etc.) and defect clusters Structure of solids and liquids crystallography Thermoelectric and thermomagnetic effects |
title | Charge transport in polycrystalline titanium dioxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20transport%20in%20polycrystalline%20titanium%20dioxide&rft.jtitle=The%20Journal%20of%20physics%20and%20chemistry%20of%20solids&rft.au=Bak,%20T.&rft.date=2003-07-01&rft.volume=64&rft.issue=7&rft.spage=1089&rft.epage=1095&rft.pages=1089-1095&rft.issn=0022-3697&rft.eissn=1879-2553&rft_id=info:doi/10.1016/S0022-3697(03)00005-2&rft_dat=%3Cproquest_cross%3E27808280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27808280&rft_id=info:pmid/&rft_els_id=S0022369703000052&rfr_iscdi=true |