Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules

Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-02, Vol.17 (4), p.3809-3817
Hauptverfasser: Lu, Yanwei, Huang, Xuedong, Wang, Shurong, Li, Binxiao, Liu, Baohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3817
container_issue 4
container_start_page 3809
container_title ACS nano
container_volume 17
creator Lu, Yanwei
Huang, Xuedong
Wang, Shurong
Li, Binxiao
Liu, Baohong
description Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy) -doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy) molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy) and co-reactant radicals to realize efficient ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications.
doi_str_mv 10.1021/acsnano.2c11934
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780765263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780765263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-4d06eea5026f5adc18a3389a1e0d174f83ad726ed8926e96c83fc7867424ec783</originalsourceid><addsrcrecordid>eNo9UD1PwzAQtRCIlsLMhjKypPVHYjsjVAUqVTAAEgNSZJxzaxTbJU4G_j1GhC737vQ-dHoIXRI8J5iShdLRKx_mVBNSseIITRPwHEv-dnzYSzJBZzF-YlwKKfgpmjAuMSaCTdH7Y7Lr4I314MD3-crvlNfQZKsWdN8FvQNn28ElPmpITGZCl1mfPdt-yNZOba3fZsGk229byG5tcCFZhxbiOToxqo1wMeIMvd6tXpYP-ebpfr282eSaVqLPiwZzAFViyk2pGk2kYkxWigBuiCiMZKoRlEMjqzQrriUzWkguClpAWtgMXf_l7rvwNUDsa2fTs22rPIQh1lRILHhJOUvSxZ9UdyHGDky976xT3XdNcP1baT1WWo-VJsfVGD58OGgO-v8O2Q8SHnTm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780765263</pqid></control><display><type>article</type><title>Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules</title><source>ACS Publications</source><source>MEDLINE</source><creator>Lu, Yanwei ; Huang, Xuedong ; Wang, Shurong ; Li, Binxiao ; Liu, Baohong</creator><creatorcontrib>Lu, Yanwei ; Huang, Xuedong ; Wang, Shurong ; Li, Binxiao ; Liu, Baohong</creatorcontrib><description>Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy) -doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy) molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy) and co-reactant radicals to realize efficient ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c11934</identifier><identifier>PMID: 36800173</identifier><language>eng</language><publisher>United States</publisher><subject>Biosensing Techniques - methods ; Catalysis ; Electrochemical Techniques - methods ; Luminescent Measurements - methods ; Nanoparticles - chemistry ; Nanopores ; Organometallic Compounds - chemistry ; Rhodium - chemistry ; Zeolites</subject><ispartof>ACS nano, 2023-02, Vol.17 (4), p.3809-3817</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-4d06eea5026f5adc18a3389a1e0d174f83ad726ed8926e96c83fc7867424ec783</citedby><cites>FETCH-LOGICAL-c297t-4d06eea5026f5adc18a3389a1e0d174f83ad726ed8926e96c83fc7867424ec783</cites><orcidid>0000-0002-0660-8610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36800173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yanwei</creatorcontrib><creatorcontrib>Huang, Xuedong</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Li, Binxiao</creatorcontrib><creatorcontrib>Liu, Baohong</creatorcontrib><title>Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy) -doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy) molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy) and co-reactant radicals to realize efficient ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications.</description><subject>Biosensing Techniques - methods</subject><subject>Catalysis</subject><subject>Electrochemical Techniques - methods</subject><subject>Luminescent Measurements - methods</subject><subject>Nanoparticles - chemistry</subject><subject>Nanopores</subject><subject>Organometallic Compounds - chemistry</subject><subject>Rhodium - chemistry</subject><subject>Zeolites</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9UD1PwzAQtRCIlsLMhjKypPVHYjsjVAUqVTAAEgNSZJxzaxTbJU4G_j1GhC737vQ-dHoIXRI8J5iShdLRKx_mVBNSseIITRPwHEv-dnzYSzJBZzF-YlwKKfgpmjAuMSaCTdH7Y7Lr4I314MD3-crvlNfQZKsWdN8FvQNn28ElPmpITGZCl1mfPdt-yNZOba3fZsGk229byG5tcCFZhxbiOToxqo1wMeIMvd6tXpYP-ebpfr282eSaVqLPiwZzAFViyk2pGk2kYkxWigBuiCiMZKoRlEMjqzQrriUzWkguClpAWtgMXf_l7rvwNUDsa2fTs22rPIQh1lRILHhJOUvSxZ9UdyHGDky976xT3XdNcP1baT1WWo-VJsfVGD58OGgO-v8O2Q8SHnTm</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Lu, Yanwei</creator><creator>Huang, Xuedong</creator><creator>Wang, Shurong</creator><creator>Li, Binxiao</creator><creator>Liu, Baohong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0660-8610</orcidid></search><sort><creationdate>20230228</creationdate><title>Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules</title><author>Lu, Yanwei ; Huang, Xuedong ; Wang, Shurong ; Li, Binxiao ; Liu, Baohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-4d06eea5026f5adc18a3389a1e0d174f83ad726ed8926e96c83fc7867424ec783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensing Techniques - methods</topic><topic>Catalysis</topic><topic>Electrochemical Techniques - methods</topic><topic>Luminescent Measurements - methods</topic><topic>Nanoparticles - chemistry</topic><topic>Nanopores</topic><topic>Organometallic Compounds - chemistry</topic><topic>Rhodium - chemistry</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yanwei</creatorcontrib><creatorcontrib>Huang, Xuedong</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Li, Binxiao</creatorcontrib><creatorcontrib>Liu, Baohong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yanwei</au><au>Huang, Xuedong</au><au>Wang, Shurong</au><au>Li, Binxiao</au><au>Liu, Baohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-02-28</date><risdate>2023</risdate><volume>17</volume><issue>4</issue><spage>3809</spage><epage>3817</epage><pages>3809-3817</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy) -doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy) molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy) and co-reactant radicals to realize efficient ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications.</abstract><cop>United States</cop><pmid>36800173</pmid><doi>10.1021/acsnano.2c11934</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0660-8610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-02, Vol.17 (4), p.3809-3817
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2780765263
source ACS Publications; MEDLINE
subjects Biosensing Techniques - methods
Catalysis
Electrochemical Techniques - methods
Luminescent Measurements - methods
Nanoparticles - chemistry
Nanopores
Organometallic Compounds - chemistry
Rhodium - chemistry
Zeolites
title Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoconfinement-Enhanced%20Electrochemiluminescence%20for%20in%20Situ%20Imaging%20of%20Single%20Biomolecules&rft.jtitle=ACS%20nano&rft.au=Lu,%20Yanwei&rft.date=2023-02-28&rft.volume=17&rft.issue=4&rft.spage=3809&rft.epage=3817&rft.pages=3809-3817&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c11934&rft_dat=%3Cproquest_cross%3E2780765263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780765263&rft_id=info:pmid/36800173&rfr_iscdi=true