Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules
Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emi...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-02, Vol.17 (4), p.3809-3817 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3817 |
---|---|
container_issue | 4 |
container_start_page | 3809 |
container_title | ACS nano |
container_volume | 17 |
creator | Lu, Yanwei Huang, Xuedong Wang, Shurong Li, Binxiao Liu, Baohong |
description | Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy)
-doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy)
molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy)
and co-reactant radicals to realize efficient
ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications. |
doi_str_mv | 10.1021/acsnano.2c11934 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780765263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780765263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-4d06eea5026f5adc18a3389a1e0d174f83ad726ed8926e96c83fc7867424ec783</originalsourceid><addsrcrecordid>eNo9UD1PwzAQtRCIlsLMhjKypPVHYjsjVAUqVTAAEgNSZJxzaxTbJU4G_j1GhC737vQ-dHoIXRI8J5iShdLRKx_mVBNSseIITRPwHEv-dnzYSzJBZzF-YlwKKfgpmjAuMSaCTdH7Y7Lr4I314MD3-crvlNfQZKsWdN8FvQNn28ElPmpITGZCl1mfPdt-yNZOba3fZsGk229byG5tcCFZhxbiOToxqo1wMeIMvd6tXpYP-ebpfr282eSaVqLPiwZzAFViyk2pGk2kYkxWigBuiCiMZKoRlEMjqzQrriUzWkguClpAWtgMXf_l7rvwNUDsa2fTs22rPIQh1lRILHhJOUvSxZ9UdyHGDky976xT3XdNcP1baT1WWo-VJsfVGD58OGgO-v8O2Q8SHnTm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780765263</pqid></control><display><type>article</type><title>Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules</title><source>ACS Publications</source><source>MEDLINE</source><creator>Lu, Yanwei ; Huang, Xuedong ; Wang, Shurong ; Li, Binxiao ; Liu, Baohong</creator><creatorcontrib>Lu, Yanwei ; Huang, Xuedong ; Wang, Shurong ; Li, Binxiao ; Liu, Baohong</creatorcontrib><description>Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy)
-doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy)
molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy)
and co-reactant radicals to realize efficient
ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c11934</identifier><identifier>PMID: 36800173</identifier><language>eng</language><publisher>United States</publisher><subject>Biosensing Techniques - methods ; Catalysis ; Electrochemical Techniques - methods ; Luminescent Measurements - methods ; Nanoparticles - chemistry ; Nanopores ; Organometallic Compounds - chemistry ; Rhodium - chemistry ; Zeolites</subject><ispartof>ACS nano, 2023-02, Vol.17 (4), p.3809-3817</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-4d06eea5026f5adc18a3389a1e0d174f83ad726ed8926e96c83fc7867424ec783</citedby><cites>FETCH-LOGICAL-c297t-4d06eea5026f5adc18a3389a1e0d174f83ad726ed8926e96c83fc7867424ec783</cites><orcidid>0000-0002-0660-8610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36800173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yanwei</creatorcontrib><creatorcontrib>Huang, Xuedong</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Li, Binxiao</creatorcontrib><creatorcontrib>Liu, Baohong</creatorcontrib><title>Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy)
-doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy)
molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy)
and co-reactant radicals to realize efficient
ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications.</description><subject>Biosensing Techniques - methods</subject><subject>Catalysis</subject><subject>Electrochemical Techniques - methods</subject><subject>Luminescent Measurements - methods</subject><subject>Nanoparticles - chemistry</subject><subject>Nanopores</subject><subject>Organometallic Compounds - chemistry</subject><subject>Rhodium - chemistry</subject><subject>Zeolites</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9UD1PwzAQtRCIlsLMhjKypPVHYjsjVAUqVTAAEgNSZJxzaxTbJU4G_j1GhC737vQ-dHoIXRI8J5iShdLRKx_mVBNSseIITRPwHEv-dnzYSzJBZzF-YlwKKfgpmjAuMSaCTdH7Y7Lr4I314MD3-crvlNfQZKsWdN8FvQNn28ElPmpITGZCl1mfPdt-yNZOba3fZsGk229byG5tcCFZhxbiOToxqo1wMeIMvd6tXpYP-ebpfr282eSaVqLPiwZzAFViyk2pGk2kYkxWigBuiCiMZKoRlEMjqzQrriUzWkguClpAWtgMXf_l7rvwNUDsa2fTs22rPIQh1lRILHhJOUvSxZ9UdyHGDky976xT3XdNcP1baT1WWo-VJsfVGD58OGgO-v8O2Q8SHnTm</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Lu, Yanwei</creator><creator>Huang, Xuedong</creator><creator>Wang, Shurong</creator><creator>Li, Binxiao</creator><creator>Liu, Baohong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0660-8610</orcidid></search><sort><creationdate>20230228</creationdate><title>Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules</title><author>Lu, Yanwei ; Huang, Xuedong ; Wang, Shurong ; Li, Binxiao ; Liu, Baohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-4d06eea5026f5adc18a3389a1e0d174f83ad726ed8926e96c83fc7867424ec783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensing Techniques - methods</topic><topic>Catalysis</topic><topic>Electrochemical Techniques - methods</topic><topic>Luminescent Measurements - methods</topic><topic>Nanoparticles - chemistry</topic><topic>Nanopores</topic><topic>Organometallic Compounds - chemistry</topic><topic>Rhodium - chemistry</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yanwei</creatorcontrib><creatorcontrib>Huang, Xuedong</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Li, Binxiao</creatorcontrib><creatorcontrib>Liu, Baohong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yanwei</au><au>Huang, Xuedong</au><au>Wang, Shurong</au><au>Li, Binxiao</au><au>Liu, Baohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-02-28</date><risdate>2023</risdate><volume>17</volume><issue>4</issue><spage>3809</spage><epage>3817</epage><pages>3809-3817</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy)
-doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy)
molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy)
and co-reactant radicals to realize efficient
ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications.</abstract><cop>United States</cop><pmid>36800173</pmid><doi>10.1021/acsnano.2c11934</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0660-8610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2023-02, Vol.17 (4), p.3809-3817 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2780765263 |
source | ACS Publications; MEDLINE |
subjects | Biosensing Techniques - methods Catalysis Electrochemical Techniques - methods Luminescent Measurements - methods Nanoparticles - chemistry Nanopores Organometallic Compounds - chemistry Rhodium - chemistry Zeolites |
title | Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoconfinement-Enhanced%20Electrochemiluminescence%20for%20in%20Situ%20Imaging%20of%20Single%20Biomolecules&rft.jtitle=ACS%20nano&rft.au=Lu,%20Yanwei&rft.date=2023-02-28&rft.volume=17&rft.issue=4&rft.spage=3809&rft.epage=3817&rft.pages=3809-3817&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c11934&rft_dat=%3Cproquest_cross%3E2780765263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780765263&rft_id=info:pmid/36800173&rfr_iscdi=true |