An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR‐II Fluorescence Imaging and Synergistic NIR‐II Photothermal‐Chemodynamic Therapy
The phototheranostics in the second near‐infrared window (NIR‐II) have proven to be promising for the precise cancer theranostics. However, the non‐responsive and “always on” imaging mode lacks the selectivity, leading to the poor diagnosis specificity. Herein, a tumor microenvironment (TME) activat...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-06, Vol.19 (22), p.e2206053-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | e2206053 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Dai, Yeneng Zhang, Fan Chen, Kai Sun, Zhiquan Wang, Zhihang Xue, Yuwen Li, Meixing Fan, Quli Shen, Qingming Zhao, Qi |
description | The phototheranostics in the second near‐infrared window (NIR‐II) have proven to be promising for the precise cancer theranostics. However, the non‐responsive and “always on” imaging mode lacks the selectivity, leading to the poor diagnosis specificity. Herein, a tumor microenvironment (TME) activated NIR‐II phototheranostic nanoplatform (Ag2S‐Fe(III)‐DBZ Pdots, AFD NPs) is designed based on the principle of Förster resonance energy transfer (FRET). The AFD NPs are fabricated through self‐assembly of Ag2S QDs (NIR‐II fluorescence probe) and ultra‐small semiconductor polymer dots (DBZ Pdots, NIR‐II fluorescence quencher) utilizing Fe(III) as coordination nodes. In normal tissues, the AFD NPs maintain in “off” state, due to the FRET between Ag2S QDs and DBZ Pdots. However, the NIR‐II fluorescence signal of AFD NPs can be rapidly “turn on” by the overexpressed GSH in tumor tissues, achieving a superior tumor‐to‐normal tissue (T/NT) signal ratio. Moreover, the released Pdots and reduced Fe(II) ions provide NIR‐II photothermal therapy (PTT) and chemodynamic therapy (CDT), respectively. The GSH depletion and NIR‐II PTT effect further aggravate CDT mediated oxidative damage toward tumors, achieving the synergistic anti‐tumor therapeutic effect. The work provides a promising strategy for the development of TME activated NIR‐II phototheranostic nanoprobes.
A tumor microenvironment (TME) activated second near‐infrared window (NIR‐II) phototheranostic nanoplatform is successfully fabricated via the coordination self‐assembly. NIR‐II fluorescence signals of the self‐assembly could be responsively “turn on” by overexpressed GSH in TME for tumor‐specific diagnosis, simultaneously achieving NIR‐II imaging guided synergistic NIR‐II photothermal‐chemodynamic therapy. |
doi_str_mv | 10.1002/smll.202206053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780765105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780765105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-58fd09694acd84ab851fbd71de37af58b837d89a1c5f670a87bc3e904bdebece3</originalsourceid><addsrcrecordid>eNqFkcuu0zAQhi0E4hwKW5bIEhs2Lb7k4iyrigORykW0rC3HmbQ58iXYCSg7HoE1j8eT4KrnFIkNm_Fo_PmfGf8IPadkRQlhr6M1ZsUIY6QgOX-ArmlB-bIQrHp4ySm5Qk9ivCWEU5aVj9EVL0TOCiqu0a-1w2s99t_UqBoD-NPRj348QlDOx7HX-ENKBqPGzgeLU8D7yaa4G0D33em-_vz7x8-6xjdm8gGiBqcB11YdenfAyrV4NzsIh_6sdk9f-lhlUmVzBOvb2SmboP2p_TA_RY86ZSI8uzsX6MvNm_3m3XL78W29WW-XmpecL3PRtaQqqkzpVmSqETntmrakLfBSdbloBC9bUSmq864oiRJlozlUJGtaaEADX6BXZ90h-K8TxFHaPq1hjHLgpyhZKUhZ5DT97wK9_Ae99VNwaTrJBKOsyAShiVqdKR18jAE6OYTeqjBLSuTJNXlyTV5cSw9e3MlOjYX2gt_blIDqDHzvDcz_kZO799vtX_E_e3apsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821264801</pqid></control><display><type>article</type><title>An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR‐II Fluorescence Imaging and Synergistic NIR‐II Photothermal‐Chemodynamic Therapy</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Dai, Yeneng ; Zhang, Fan ; Chen, Kai ; Sun, Zhiquan ; Wang, Zhihang ; Xue, Yuwen ; Li, Meixing ; Fan, Quli ; Shen, Qingming ; Zhao, Qi</creator><creatorcontrib>Dai, Yeneng ; Zhang, Fan ; Chen, Kai ; Sun, Zhiquan ; Wang, Zhihang ; Xue, Yuwen ; Li, Meixing ; Fan, Quli ; Shen, Qingming ; Zhao, Qi</creatorcontrib><description>The phototheranostics in the second near‐infrared window (NIR‐II) have proven to be promising for the precise cancer theranostics. However, the non‐responsive and “always on” imaging mode lacks the selectivity, leading to the poor diagnosis specificity. Herein, a tumor microenvironment (TME) activated NIR‐II phototheranostic nanoplatform (Ag2S‐Fe(III)‐DBZ Pdots, AFD NPs) is designed based on the principle of Förster resonance energy transfer (FRET). The AFD NPs are fabricated through self‐assembly of Ag2S QDs (NIR‐II fluorescence probe) and ultra‐small semiconductor polymer dots (DBZ Pdots, NIR‐II fluorescence quencher) utilizing Fe(III) as coordination nodes. In normal tissues, the AFD NPs maintain in “off” state, due to the FRET between Ag2S QDs and DBZ Pdots. However, the NIR‐II fluorescence signal of AFD NPs can be rapidly “turn on” by the overexpressed GSH in tumor tissues, achieving a superior tumor‐to‐normal tissue (T/NT) signal ratio. Moreover, the released Pdots and reduced Fe(II) ions provide NIR‐II photothermal therapy (PTT) and chemodynamic therapy (CDT), respectively. The GSH depletion and NIR‐II PTT effect further aggravate CDT mediated oxidative damage toward tumors, achieving the synergistic anti‐tumor therapeutic effect. The work provides a promising strategy for the development of TME activated NIR‐II phototheranostic nanoprobes.
A tumor microenvironment (TME) activated second near‐infrared window (NIR‐II) phototheranostic nanoplatform is successfully fabricated via the coordination self‐assembly. NIR‐II fluorescence signals of the self‐assembly could be responsively “turn on” by overexpressed GSH in TME for tumor‐specific diagnosis, simultaneously achieving NIR‐II imaging guided synergistic NIR‐II photothermal‐chemodynamic therapy.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202206053</identifier><identifier>PMID: 36852618</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>activatable ; Cell Line, Tumor ; coordination self‐assembly ; Energy transfer ; Ferric Compounds ; Fluorescence Resonance Energy Transfer ; Fluorescent indicators ; Humans ; Infrared windows ; Medical imaging ; Nanoparticles ; Nanotechnology ; Near infrared radiation ; Neoplasms - diagnostic imaging ; Neoplasms - therapy ; Optical Imaging ; Photothermal Therapy ; second near‐infrared window ; Self-assembly ; synergistic tumor treatments ; Therapy ; Tumor Microenvironment ; tumor microenvironments ; Tumors</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (22), p.e2206053-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-58fd09694acd84ab851fbd71de37af58b837d89a1c5f670a87bc3e904bdebece3</citedby><cites>FETCH-LOGICAL-c3733-58fd09694acd84ab851fbd71de37af58b837d89a1c5f670a87bc3e904bdebece3</cites><orcidid>0000-0002-5940-8911 ; 0000-0002-5969-6407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202206053$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202206053$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36852618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Yeneng</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Sun, Zhiquan</creatorcontrib><creatorcontrib>Wang, Zhihang</creatorcontrib><creatorcontrib>Xue, Yuwen</creatorcontrib><creatorcontrib>Li, Meixing</creatorcontrib><creatorcontrib>Fan, Quli</creatorcontrib><creatorcontrib>Shen, Qingming</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><title>An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR‐II Fluorescence Imaging and Synergistic NIR‐II Photothermal‐Chemodynamic Therapy</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The phototheranostics in the second near‐infrared window (NIR‐II) have proven to be promising for the precise cancer theranostics. However, the non‐responsive and “always on” imaging mode lacks the selectivity, leading to the poor diagnosis specificity. Herein, a tumor microenvironment (TME) activated NIR‐II phototheranostic nanoplatform (Ag2S‐Fe(III)‐DBZ Pdots, AFD NPs) is designed based on the principle of Förster resonance energy transfer (FRET). The AFD NPs are fabricated through self‐assembly of Ag2S QDs (NIR‐II fluorescence probe) and ultra‐small semiconductor polymer dots (DBZ Pdots, NIR‐II fluorescence quencher) utilizing Fe(III) as coordination nodes. In normal tissues, the AFD NPs maintain in “off” state, due to the FRET between Ag2S QDs and DBZ Pdots. However, the NIR‐II fluorescence signal of AFD NPs can be rapidly “turn on” by the overexpressed GSH in tumor tissues, achieving a superior tumor‐to‐normal tissue (T/NT) signal ratio. Moreover, the released Pdots and reduced Fe(II) ions provide NIR‐II photothermal therapy (PTT) and chemodynamic therapy (CDT), respectively. The GSH depletion and NIR‐II PTT effect further aggravate CDT mediated oxidative damage toward tumors, achieving the synergistic anti‐tumor therapeutic effect. The work provides a promising strategy for the development of TME activated NIR‐II phototheranostic nanoprobes.
A tumor microenvironment (TME) activated second near‐infrared window (NIR‐II) phototheranostic nanoplatform is successfully fabricated via the coordination self‐assembly. NIR‐II fluorescence signals of the self‐assembly could be responsively “turn on” by overexpressed GSH in TME for tumor‐specific diagnosis, simultaneously achieving NIR‐II imaging guided synergistic NIR‐II photothermal‐chemodynamic therapy.</description><subject>activatable</subject><subject>Cell Line, Tumor</subject><subject>coordination self‐assembly</subject><subject>Energy transfer</subject><subject>Ferric Compounds</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescent indicators</subject><subject>Humans</subject><subject>Infrared windows</subject><subject>Medical imaging</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Near infrared radiation</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - therapy</subject><subject>Optical Imaging</subject><subject>Photothermal Therapy</subject><subject>second near‐infrared window</subject><subject>Self-assembly</subject><subject>synergistic tumor treatments</subject><subject>Therapy</subject><subject>Tumor Microenvironment</subject><subject>tumor microenvironments</subject><subject>Tumors</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuu0zAQhi0E4hwKW5bIEhs2Lb7k4iyrigORykW0rC3HmbQ58iXYCSg7HoE1j8eT4KrnFIkNm_Fo_PmfGf8IPadkRQlhr6M1ZsUIY6QgOX-ArmlB-bIQrHp4ySm5Qk9ivCWEU5aVj9EVL0TOCiqu0a-1w2s99t_UqBoD-NPRj348QlDOx7HX-ENKBqPGzgeLU8D7yaa4G0D33em-_vz7x8-6xjdm8gGiBqcB11YdenfAyrV4NzsIh_6sdk9f-lhlUmVzBOvb2SmboP2p_TA_RY86ZSI8uzsX6MvNm_3m3XL78W29WW-XmpecL3PRtaQqqkzpVmSqETntmrakLfBSdbloBC9bUSmq864oiRJlozlUJGtaaEADX6BXZ90h-K8TxFHaPq1hjHLgpyhZKUhZ5DT97wK9_Ae99VNwaTrJBKOsyAShiVqdKR18jAE6OYTeqjBLSuTJNXlyTV5cSw9e3MlOjYX2gt_blIDqDHzvDcz_kZO799vtX_E_e3apsg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Dai, Yeneng</creator><creator>Zhang, Fan</creator><creator>Chen, Kai</creator><creator>Sun, Zhiquan</creator><creator>Wang, Zhihang</creator><creator>Xue, Yuwen</creator><creator>Li, Meixing</creator><creator>Fan, Quli</creator><creator>Shen, Qingming</creator><creator>Zhao, Qi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5940-8911</orcidid><orcidid>https://orcid.org/0000-0002-5969-6407</orcidid></search><sort><creationdate>20230601</creationdate><title>An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR‐II Fluorescence Imaging and Synergistic NIR‐II Photothermal‐Chemodynamic Therapy</title><author>Dai, Yeneng ; Zhang, Fan ; Chen, Kai ; Sun, Zhiquan ; Wang, Zhihang ; Xue, Yuwen ; Li, Meixing ; Fan, Quli ; Shen, Qingming ; Zhao, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-58fd09694acd84ab851fbd71de37af58b837d89a1c5f670a87bc3e904bdebece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>activatable</topic><topic>Cell Line, Tumor</topic><topic>coordination self‐assembly</topic><topic>Energy transfer</topic><topic>Ferric Compounds</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescent indicators</topic><topic>Humans</topic><topic>Infrared windows</topic><topic>Medical imaging</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Near infrared radiation</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - therapy</topic><topic>Optical Imaging</topic><topic>Photothermal Therapy</topic><topic>second near‐infrared window</topic><topic>Self-assembly</topic><topic>synergistic tumor treatments</topic><topic>Therapy</topic><topic>Tumor Microenvironment</topic><topic>tumor microenvironments</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Yeneng</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Sun, Zhiquan</creatorcontrib><creatorcontrib>Wang, Zhihang</creatorcontrib><creatorcontrib>Xue, Yuwen</creatorcontrib><creatorcontrib>Li, Meixing</creatorcontrib><creatorcontrib>Fan, Quli</creatorcontrib><creatorcontrib>Shen, Qingming</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Yeneng</au><au>Zhang, Fan</au><au>Chen, Kai</au><au>Sun, Zhiquan</au><au>Wang, Zhihang</au><au>Xue, Yuwen</au><au>Li, Meixing</au><au>Fan, Quli</au><au>Shen, Qingming</au><au>Zhao, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR‐II Fluorescence Imaging and Synergistic NIR‐II Photothermal‐Chemodynamic Therapy</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>19</volume><issue>22</issue><spage>e2206053</spage><epage>n/a</epage><pages>e2206053-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The phototheranostics in the second near‐infrared window (NIR‐II) have proven to be promising for the precise cancer theranostics. However, the non‐responsive and “always on” imaging mode lacks the selectivity, leading to the poor diagnosis specificity. Herein, a tumor microenvironment (TME) activated NIR‐II phototheranostic nanoplatform (Ag2S‐Fe(III)‐DBZ Pdots, AFD NPs) is designed based on the principle of Förster resonance energy transfer (FRET). The AFD NPs are fabricated through self‐assembly of Ag2S QDs (NIR‐II fluorescence probe) and ultra‐small semiconductor polymer dots (DBZ Pdots, NIR‐II fluorescence quencher) utilizing Fe(III) as coordination nodes. In normal tissues, the AFD NPs maintain in “off” state, due to the FRET between Ag2S QDs and DBZ Pdots. However, the NIR‐II fluorescence signal of AFD NPs can be rapidly “turn on” by the overexpressed GSH in tumor tissues, achieving a superior tumor‐to‐normal tissue (T/NT) signal ratio. Moreover, the released Pdots and reduced Fe(II) ions provide NIR‐II photothermal therapy (PTT) and chemodynamic therapy (CDT), respectively. The GSH depletion and NIR‐II PTT effect further aggravate CDT mediated oxidative damage toward tumors, achieving the synergistic anti‐tumor therapeutic effect. The work provides a promising strategy for the development of TME activated NIR‐II phototheranostic nanoprobes.
A tumor microenvironment (TME) activated second near‐infrared window (NIR‐II) phototheranostic nanoplatform is successfully fabricated via the coordination self‐assembly. NIR‐II fluorescence signals of the self‐assembly could be responsively “turn on” by overexpressed GSH in TME for tumor‐specific diagnosis, simultaneously achieving NIR‐II imaging guided synergistic NIR‐II photothermal‐chemodynamic therapy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36852618</pmid><doi>10.1002/smll.202206053</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5940-8911</orcidid><orcidid>https://orcid.org/0000-0002-5969-6407</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (22), p.e2206053-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2780765105 |
source | MEDLINE; Access via Wiley Online Library |
subjects | activatable Cell Line, Tumor coordination self‐assembly Energy transfer Ferric Compounds Fluorescence Resonance Energy Transfer Fluorescent indicators Humans Infrared windows Medical imaging Nanoparticles Nanotechnology Near infrared radiation Neoplasms - diagnostic imaging Neoplasms - therapy Optical Imaging Photothermal Therapy second near‐infrared window Self-assembly synergistic tumor treatments Therapy Tumor Microenvironment tumor microenvironments Tumors |
title | An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR‐II Fluorescence Imaging and Synergistic NIR‐II Photothermal‐Chemodynamic Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Activatable%20Phototheranostic%20Nanoplatform%20for%20Tumor%20Specific%20NIR%E2%80%90II%20Fluorescence%20Imaging%20and%20Synergistic%20NIR%E2%80%90II%20Photothermal%E2%80%90Chemodynamic%20Therapy&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dai,%20Yeneng&rft.date=2023-06-01&rft.volume=19&rft.issue=22&rft.spage=e2206053&rft.epage=n/a&rft.pages=e2206053-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202206053&rft_dat=%3Cproquest_cross%3E2780765105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821264801&rft_id=info:pmid/36852618&rfr_iscdi=true |