Characterization of endogenous Kv1.3 channel isoforms in T cells

Voltage‐dependent potassium channel Kv1.3 plays a key role on T‐cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T‐cell line with endogenous Kv1.3 channel tagged, to determine t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2023-05, Vol.238 (5), p.976-991
Hauptverfasser: Serna, Julia, Peraza, Diego A., Moreno‐Estar, Sara, Saez, Juan J., Gobelli, Dino, Simarro, Maria, Hivroz, Claire, López‐López, José R., Cidad, Pilar, Fuente, Miguel A., Pérez‐García, M. Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 991
container_issue 5
container_start_page 976
container_title Journal of cellular physiology
container_volume 238
creator Serna, Julia
Peraza, Diego A.
Moreno‐Estar, Sara
Saez, Juan J.
Gobelli, Dino
Simarro, Maria
Hivroz, Claire
López‐López, José R.
Cidad, Pilar
Fuente, Miguel A.
Pérez‐García, M. Teresa
description Voltage‐dependent potassium channel Kv1.3 plays a key role on T‐cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T‐cell line with endogenous Kv1.3 channel tagged, to determine the expression, location, and changes upon activation of the native Kv1.3 channels. CRISPR‐Cas9 technique was used to insert a Flag‐Myc peptide at the C terminus of the KCNA3 gene. Basal or activated channel expression was studied using western blot analysis and imaging techniques. We identified two isoforms of Kv1.3 other than the canonical channel (54 KDa) differing on their N terminus: a longer isoform (70 KDa) and a truncated isoform (43 KDa). All three isoforms were upregulated after T‐cell activation. We focused on the functional characterization of the truncated isoform (short form, SF), because it has not been previously described and could be present in the available Kv1.3−/− mice models. Overexpression of SF in HEK cells elicited small amplitude Kv1.3‐like currents, which, contrary to canonical Kv1.3, did not induce HEK proliferation. To explore the role of endogenous SF isoform in a native system, we generated both a knockout Jurkat clone and a clone expressing only the SF isoform. Although the canonical isoform (long form) localizes mainly at the plasma membrane, SF remains intracellular, accumulating perinuclearly. Accordingly, SF Jurkat cells did not show Kv1.3 currents and exhibited depolarized resting membrane potential (VM), decreased Ca2+ influx, and a reduction in the [Ca2+]i increase upon stimulation. Functional characterization of these Kv1.3 channel isoforms showed their differential contribution to signaling pathways involved in formation of the immunological synapse. We conclude that alternative translation initiation generates at least three endogenous Kv1.3 channel isoforms in T cells that exhibit different functional roles. For some of these functions, Kv1.3 proteins do not need to form functional plasma membrane channels.
doi_str_mv 10.1002/jcp.30984
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780764865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780764865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-1a19e8c4b3f4e17953e6828eaa6b3496c8eb1898a3200cc9ecdff430d7638e653</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EoqUw8AIoEgsMae3YcewNFPFfCYYyW45zQ1MlcbEbUHl60qYwIDHd4R4dfToInRI8JhhHk4VZjimWgu2hIcEyCRmPo3007H4klDEjA3Tk_QJjLCWlh2hAuYijWJIhukrn2mmzAld-6VVpm8AWATS5fYPGtj54-iBjGpi5bhqogtLbwrraB2UTzAIDVeWP0UGhKw8nuztCr7c3s_Q-nD7fPaTX09BQIVhINJEgDMtowYAkMqbARSRAa55RJrkRkBEhhaYRxsZIMHlRMIrzhFMBPKYjdNF7l86-t-BXqi79ZoFuoBuqokTghDOxRc__oAvbuqZbpyJBqEyITHBHXfaUcdZ7B4VaurLWbq0IVpusqsuqtlk79mxnbLMa8l_yp2MHTHrgs6xg_b9JPaYvvfIbIkJ_Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813971970</pqid></control><display><type>article</type><title>Characterization of endogenous Kv1.3 channel isoforms in T cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Serna, Julia ; Peraza, Diego A. ; Moreno‐Estar, Sara ; Saez, Juan J. ; Gobelli, Dino ; Simarro, Maria ; Hivroz, Claire ; López‐López, José R. ; Cidad, Pilar ; Fuente, Miguel A. ; Pérez‐García, M. Teresa</creator><creatorcontrib>Serna, Julia ; Peraza, Diego A. ; Moreno‐Estar, Sara ; Saez, Juan J. ; Gobelli, Dino ; Simarro, Maria ; Hivroz, Claire ; López‐López, José R. ; Cidad, Pilar ; Fuente, Miguel A. ; Pérez‐García, M. Teresa</creatorcontrib><description>Voltage‐dependent potassium channel Kv1.3 plays a key role on T‐cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T‐cell line with endogenous Kv1.3 channel tagged, to determine the expression, location, and changes upon activation of the native Kv1.3 channels. CRISPR‐Cas9 technique was used to insert a Flag‐Myc peptide at the C terminus of the KCNA3 gene. Basal or activated channel expression was studied using western blot analysis and imaging techniques. We identified two isoforms of Kv1.3 other than the canonical channel (54 KDa) differing on their N terminus: a longer isoform (70 KDa) and a truncated isoform (43 KDa). All three isoforms were upregulated after T‐cell activation. We focused on the functional characterization of the truncated isoform (short form, SF), because it has not been previously described and could be present in the available Kv1.3−/− mice models. Overexpression of SF in HEK cells elicited small amplitude Kv1.3‐like currents, which, contrary to canonical Kv1.3, did not induce HEK proliferation. To explore the role of endogenous SF isoform in a native system, we generated both a knockout Jurkat clone and a clone expressing only the SF isoform. Although the canonical isoform (long form) localizes mainly at the plasma membrane, SF remains intracellular, accumulating perinuclearly. Accordingly, SF Jurkat cells did not show Kv1.3 currents and exhibited depolarized resting membrane potential (VM), decreased Ca2+ influx, and a reduction in the [Ca2+]i increase upon stimulation. Functional characterization of these Kv1.3 channel isoforms showed their differential contribution to signaling pathways involved in formation of the immunological synapse. We conclude that alternative translation initiation generates at least three endogenous Kv1.3 channel isoforms in T cells that exhibit different functional roles. For some of these functions, Kv1.3 proteins do not need to form functional plasma membrane channels.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.30984</identifier><identifier>PMID: 36852591</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animal models ; Animals ; Antibodies ; C-Terminus ; Calcium (intracellular) ; Calcium influx ; Calcium ions ; calcium signaling ; Cell activation ; Cell Line ; Cell Membrane - metabolism ; Channels ; Cloning ; CRISPR ; electrophysiology ; Functionals ; Humans ; Imaging techniques ; immunological synapse ; Immunological synapses ; Immunology ; Isoforms ; Jurkat Cells ; Kv1.3 channels ; Kv1.3 Potassium Channel - genetics ; Kv1.3 Potassium Channel - metabolism ; Lymphocytes ; Lymphocytes T ; Membrane channels ; Membrane potential ; Membranes ; Mice ; Myc protein ; Potassium channels (voltage-gated) ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Synapses ; T cells ; Translation initiation</subject><ispartof>Journal of cellular physiology, 2023-05, Vol.238 (5), p.976-991</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Journal of Cellular Physiology published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-1a19e8c4b3f4e17953e6828eaa6b3496c8eb1898a3200cc9ecdff430d7638e653</citedby><cites>FETCH-LOGICAL-c3884-1a19e8c4b3f4e17953e6828eaa6b3496c8eb1898a3200cc9ecdff430d7638e653</cites><orcidid>0000-0001-8540-8117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.30984$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.30984$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36852591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Serna, Julia</creatorcontrib><creatorcontrib>Peraza, Diego A.</creatorcontrib><creatorcontrib>Moreno‐Estar, Sara</creatorcontrib><creatorcontrib>Saez, Juan J.</creatorcontrib><creatorcontrib>Gobelli, Dino</creatorcontrib><creatorcontrib>Simarro, Maria</creatorcontrib><creatorcontrib>Hivroz, Claire</creatorcontrib><creatorcontrib>López‐López, José R.</creatorcontrib><creatorcontrib>Cidad, Pilar</creatorcontrib><creatorcontrib>Fuente, Miguel A.</creatorcontrib><creatorcontrib>Pérez‐García, M. Teresa</creatorcontrib><title>Characterization of endogenous Kv1.3 channel isoforms in T cells</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Voltage‐dependent potassium channel Kv1.3 plays a key role on T‐cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T‐cell line with endogenous Kv1.3 channel tagged, to determine the expression, location, and changes upon activation of the native Kv1.3 channels. CRISPR‐Cas9 technique was used to insert a Flag‐Myc peptide at the C terminus of the KCNA3 gene. Basal or activated channel expression was studied using western blot analysis and imaging techniques. We identified two isoforms of Kv1.3 other than the canonical channel (54 KDa) differing on their N terminus: a longer isoform (70 KDa) and a truncated isoform (43 KDa). All three isoforms were upregulated after T‐cell activation. We focused on the functional characterization of the truncated isoform (short form, SF), because it has not been previously described and could be present in the available Kv1.3−/− mice models. Overexpression of SF in HEK cells elicited small amplitude Kv1.3‐like currents, which, contrary to canonical Kv1.3, did not induce HEK proliferation. To explore the role of endogenous SF isoform in a native system, we generated both a knockout Jurkat clone and a clone expressing only the SF isoform. Although the canonical isoform (long form) localizes mainly at the plasma membrane, SF remains intracellular, accumulating perinuclearly. Accordingly, SF Jurkat cells did not show Kv1.3 currents and exhibited depolarized resting membrane potential (VM), decreased Ca2+ influx, and a reduction in the [Ca2+]i increase upon stimulation. Functional characterization of these Kv1.3 channel isoforms showed their differential contribution to signaling pathways involved in formation of the immunological synapse. We conclude that alternative translation initiation generates at least three endogenous Kv1.3 channel isoforms in T cells that exhibit different functional roles. For some of these functions, Kv1.3 proteins do not need to form functional plasma membrane channels.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>C-Terminus</subject><subject>Calcium (intracellular)</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>calcium signaling</subject><subject>Cell activation</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Channels</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>electrophysiology</subject><subject>Functionals</subject><subject>Humans</subject><subject>Imaging techniques</subject><subject>immunological synapse</subject><subject>Immunological synapses</subject><subject>Immunology</subject><subject>Isoforms</subject><subject>Jurkat Cells</subject><subject>Kv1.3 channels</subject><subject>Kv1.3 Potassium Channel - genetics</subject><subject>Kv1.3 Potassium Channel - metabolism</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Membrane channels</subject><subject>Membrane potential</subject><subject>Membranes</subject><subject>Mice</subject><subject>Myc protein</subject><subject>Potassium channels (voltage-gated)</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Synapses</subject><subject>T cells</subject><subject>Translation initiation</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kL1OwzAURi0EoqUw8AIoEgsMae3YcewNFPFfCYYyW45zQ1MlcbEbUHl60qYwIDHd4R4dfToInRI8JhhHk4VZjimWgu2hIcEyCRmPo3007H4klDEjA3Tk_QJjLCWlh2hAuYijWJIhukrn2mmzAld-6VVpm8AWATS5fYPGtj54-iBjGpi5bhqogtLbwrraB2UTzAIDVeWP0UGhKw8nuztCr7c3s_Q-nD7fPaTX09BQIVhINJEgDMtowYAkMqbARSRAa55RJrkRkBEhhaYRxsZIMHlRMIrzhFMBPKYjdNF7l86-t-BXqi79ZoFuoBuqokTghDOxRc__oAvbuqZbpyJBqEyITHBHXfaUcdZ7B4VaurLWbq0IVpusqsuqtlk79mxnbLMa8l_yp2MHTHrgs6xg_b9JPaYvvfIbIkJ_Ng</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Serna, Julia</creator><creator>Peraza, Diego A.</creator><creator>Moreno‐Estar, Sara</creator><creator>Saez, Juan J.</creator><creator>Gobelli, Dino</creator><creator>Simarro, Maria</creator><creator>Hivroz, Claire</creator><creator>López‐López, José R.</creator><creator>Cidad, Pilar</creator><creator>Fuente, Miguel A.</creator><creator>Pérez‐García, M. Teresa</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8540-8117</orcidid></search><sort><creationdate>202305</creationdate><title>Characterization of endogenous Kv1.3 channel isoforms in T cells</title><author>Serna, Julia ; Peraza, Diego A. ; Moreno‐Estar, Sara ; Saez, Juan J. ; Gobelli, Dino ; Simarro, Maria ; Hivroz, Claire ; López‐López, José R. ; Cidad, Pilar ; Fuente, Miguel A. ; Pérez‐García, M. Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-1a19e8c4b3f4e17953e6828eaa6b3496c8eb1898a3200cc9ecdff430d7638e653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>C-Terminus</topic><topic>Calcium (intracellular)</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>calcium signaling</topic><topic>Cell activation</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Channels</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>electrophysiology</topic><topic>Functionals</topic><topic>Humans</topic><topic>Imaging techniques</topic><topic>immunological synapse</topic><topic>Immunological synapses</topic><topic>Immunology</topic><topic>Isoforms</topic><topic>Jurkat Cells</topic><topic>Kv1.3 channels</topic><topic>Kv1.3 Potassium Channel - genetics</topic><topic>Kv1.3 Potassium Channel - metabolism</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Membrane channels</topic><topic>Membrane potential</topic><topic>Membranes</topic><topic>Mice</topic><topic>Myc protein</topic><topic>Potassium channels (voltage-gated)</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Synapses</topic><topic>T cells</topic><topic>Translation initiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serna, Julia</creatorcontrib><creatorcontrib>Peraza, Diego A.</creatorcontrib><creatorcontrib>Moreno‐Estar, Sara</creatorcontrib><creatorcontrib>Saez, Juan J.</creatorcontrib><creatorcontrib>Gobelli, Dino</creatorcontrib><creatorcontrib>Simarro, Maria</creatorcontrib><creatorcontrib>Hivroz, Claire</creatorcontrib><creatorcontrib>López‐López, José R.</creatorcontrib><creatorcontrib>Cidad, Pilar</creatorcontrib><creatorcontrib>Fuente, Miguel A.</creatorcontrib><creatorcontrib>Pérez‐García, M. Teresa</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serna, Julia</au><au>Peraza, Diego A.</au><au>Moreno‐Estar, Sara</au><au>Saez, Juan J.</au><au>Gobelli, Dino</au><au>Simarro, Maria</au><au>Hivroz, Claire</au><au>López‐López, José R.</au><au>Cidad, Pilar</au><au>Fuente, Miguel A.</au><au>Pérez‐García, M. Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of endogenous Kv1.3 channel isoforms in T cells</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2023-05</date><risdate>2023</risdate><volume>238</volume><issue>5</issue><spage>976</spage><epage>991</epage><pages>976-991</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Voltage‐dependent potassium channel Kv1.3 plays a key role on T‐cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T‐cell line with endogenous Kv1.3 channel tagged, to determine the expression, location, and changes upon activation of the native Kv1.3 channels. CRISPR‐Cas9 technique was used to insert a Flag‐Myc peptide at the C terminus of the KCNA3 gene. Basal or activated channel expression was studied using western blot analysis and imaging techniques. We identified two isoforms of Kv1.3 other than the canonical channel (54 KDa) differing on their N terminus: a longer isoform (70 KDa) and a truncated isoform (43 KDa). All three isoforms were upregulated after T‐cell activation. We focused on the functional characterization of the truncated isoform (short form, SF), because it has not been previously described and could be present in the available Kv1.3−/− mice models. Overexpression of SF in HEK cells elicited small amplitude Kv1.3‐like currents, which, contrary to canonical Kv1.3, did not induce HEK proliferation. To explore the role of endogenous SF isoform in a native system, we generated both a knockout Jurkat clone and a clone expressing only the SF isoform. Although the canonical isoform (long form) localizes mainly at the plasma membrane, SF remains intracellular, accumulating perinuclearly. Accordingly, SF Jurkat cells did not show Kv1.3 currents and exhibited depolarized resting membrane potential (VM), decreased Ca2+ influx, and a reduction in the [Ca2+]i increase upon stimulation. Functional characterization of these Kv1.3 channel isoforms showed their differential contribution to signaling pathways involved in formation of the immunological synapse. We conclude that alternative translation initiation generates at least three endogenous Kv1.3 channel isoforms in T cells that exhibit different functional roles. For some of these functions, Kv1.3 proteins do not need to form functional plasma membrane channels.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36852591</pmid><doi>10.1002/jcp.30984</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8540-8117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2023-05, Vol.238 (5), p.976-991
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_2780764865
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal models
Animals
Antibodies
C-Terminus
Calcium (intracellular)
Calcium influx
Calcium ions
calcium signaling
Cell activation
Cell Line
Cell Membrane - metabolism
Channels
Cloning
CRISPR
electrophysiology
Functionals
Humans
Imaging techniques
immunological synapse
Immunological synapses
Immunology
Isoforms
Jurkat Cells
Kv1.3 channels
Kv1.3 Potassium Channel - genetics
Kv1.3 Potassium Channel - metabolism
Lymphocytes
Lymphocytes T
Membrane channels
Membrane potential
Membranes
Mice
Myc protein
Potassium channels (voltage-gated)
Protein Isoforms - genetics
Protein Isoforms - metabolism
Synapses
T cells
Translation initiation
title Characterization of endogenous Kv1.3 channel isoforms in T cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20endogenous%20Kv1.3%20channel%20isoforms%20in%20T%20cells&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Serna,%20Julia&rft.date=2023-05&rft.volume=238&rft.issue=5&rft.spage=976&rft.epage=991&rft.pages=976-991&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.30984&rft_dat=%3Cproquest_cross%3E2780764865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813971970&rft_id=info:pmid/36852591&rfr_iscdi=true