Ultrahigh‐Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification

Lithium cobalt oxide (LCO) is widely used in Li‐ion batteries due to its high volumetric energy density, which is generally charged to 4.3 V. Lifting the cut‐off voltage of LCO from 4.3 V to 4.7 V will increase the specific capacity from 150 to 230 mAh g‐1 with a significant improvement of 53%. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-06, Vol.35 (22), p.e2212059-n/a
Hauptverfasser: Zhuang, Zhaofeng, Wang, Junxiong, Jia, Kai, Ji, Guanjun, Ma, Jun, Han, Zhiyuan, Piao, Zhihong, Gao, Runhua, Ji, Haocheng, Zhong, Xiongwei, Zhou, Guangmin, Cheng, Hui‐Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page e2212059
container_title Advanced materials (Weinheim)
container_volume 35
creator Zhuang, Zhaofeng
Wang, Junxiong
Jia, Kai
Ji, Guanjun
Ma, Jun
Han, Zhiyuan
Piao, Zhihong
Gao, Runhua
Ji, Haocheng
Zhong, Xiongwei
Zhou, Guangmin
Cheng, Hui‐Ming
description Lithium cobalt oxide (LCO) is widely used in Li‐ion batteries due to its high volumetric energy density, which is generally charged to 4.3 V. Lifting the cut‐off voltage of LCO from 4.3 V to 4.7 V will increase the specific capacity from 150 to 230 mAh g‐1 with a significant improvement of 53%. However, LCO suffers serious problems of H1‐3/O1 phase transformation, unstable interface between cathode and electrolyte, and irreversible oxygen redox reaction at 4.7 V. Herein, interface stabilization and band structure modification are proposed to strengthen the crystal structure of LCO for stable cycling of LCO at an ultrahigh voltage of 4.7 V. Gradient distribution of magnesium and uniform doping of nickel in Li layers inhibit the harmful phase transitions of LCO, while uniform LiMgxNi1−xPO4 coating stabilizes the LCO‐electrolyte interface during cycles. Moreover, the modified band structure improves the oxygen redox reaction reversibility and electrochemical performance of the modified LCO. As a result, the modified LCO has a high capacity retention of 78% after 200 cycles at 4.7 V in the half cell and 63% after 500 cycles at 4.6 V in the full cell. This work makes the capacity of LCO one step closer to its theoretical specific capacity. The modified LCO has a gradient doping of Mg, uniform doping of Ni in Li layers, and uniform LiMgxNi1−xPO4 coating. The doping and coating simultaneously modify the band structure to improve the oxygen redox reversibility during cycles. Therefore, the modified LCO shows excellent cycling performance both at 4.6 V and 4.7 V.
doi_str_mv 10.1002/adma.202212059
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780484159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780484159</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3329-2401d49d46f07bedb96ce8a11ed18f8bf0ab46527a5f04e7a8c9225481eeeeeb3</originalsourceid><addsrcrecordid>eNpdkL9OwzAQhy0EEqWwMltiYUk5O3Zij6X8q9SqQ2lXy0mc1lWaFMcRKhOPwCPwLDwKT0JKUQduuNNP9-l0-hC6JNAjAPRGZ2vdo0ApocDlEeoQTknAQPJj1AEZ8kBGTJyis7peAYCMIOogNSu800u7WH6_f8yrwuuFwSM7qCYUa49ZL_76nONki4elNy7XqcFTrxNb2DftbVViXWb4dtem3jWpb5zB4yqzuU1_9-foJNdFbS7-ZhfNHu6fB0_BaPI4HPRHwSoMqQwoA5IxmbEohzgxWSKj1AhNiMmIyEWSg05YxGmseQ7MxFqkklLOBDG7SsIuut7f3bjqpTG1V2tbp6YodGmqplY0FsAEI1y26NU_dFU1rmy_U1S08lpJlLeU3FOvtjBbtXF2rd1WEVA72WonWx1kq_7duH9I4Q_t13ZT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821264825</pqid></control><display><type>article</type><title>Ultrahigh‐Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhuang, Zhaofeng ; Wang, Junxiong ; Jia, Kai ; Ji, Guanjun ; Ma, Jun ; Han, Zhiyuan ; Piao, Zhihong ; Gao, Runhua ; Ji, Haocheng ; Zhong, Xiongwei ; Zhou, Guangmin ; Cheng, Hui‐Ming</creator><creatorcontrib>Zhuang, Zhaofeng ; Wang, Junxiong ; Jia, Kai ; Ji, Guanjun ; Ma, Jun ; Han, Zhiyuan ; Piao, Zhihong ; Gao, Runhua ; Ji, Haocheng ; Zhong, Xiongwei ; Zhou, Guangmin ; Cheng, Hui‐Ming</creatorcontrib><description>Lithium cobalt oxide (LCO) is widely used in Li‐ion batteries due to its high volumetric energy density, which is generally charged to 4.3 V. Lifting the cut‐off voltage of LCO from 4.3 V to 4.7 V will increase the specific capacity from 150 to 230 mAh g‐1 with a significant improvement of 53%. However, LCO suffers serious problems of H1‐3/O1 phase transformation, unstable interface between cathode and electrolyte, and irreversible oxygen redox reaction at 4.7 V. Herein, interface stabilization and band structure modification are proposed to strengthen the crystal structure of LCO for stable cycling of LCO at an ultrahigh voltage of 4.7 V. Gradient distribution of magnesium and uniform doping of nickel in Li layers inhibit the harmful phase transitions of LCO, while uniform LiMgxNi1−xPO4 coating stabilizes the LCO‐electrolyte interface during cycles. Moreover, the modified band structure improves the oxygen redox reaction reversibility and electrochemical performance of the modified LCO. As a result, the modified LCO has a high capacity retention of 78% after 200 cycles at 4.7 V in the half cell and 63% after 500 cycles at 4.6 V in the full cell. This work makes the capacity of LCO one step closer to its theoretical specific capacity. The modified LCO has a gradient doping of Mg, uniform doping of Ni in Li layers, and uniform LiMgxNi1−xPO4 coating. The doping and coating simultaneously modify the band structure to improve the oxygen redox reversibility during cycles. Therefore, the modified LCO shows excellent cycling performance both at 4.6 V and 4.7 V.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202212059</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>band structure ; Band structure of solids ; Cobalt oxides ; Crystal structure ; Electric potential ; Electrochemical analysis ; Electrolytes ; element doping ; High voltages ; high‐voltage LiCoO 2 ; interface stabilization ; Lithium compounds ; Lithium-ion batteries ; Magnesium ; Materials science ; Oxygen ; phase transition ; Phase transitions ; Redox reactions ; Stabilization</subject><ispartof>Advanced materials (Weinheim), 2023-06, Vol.35 (22), p.e2212059-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3629-5686 ; 0000-0002-3791-8523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202212059$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202212059$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhuang, Zhaofeng</creatorcontrib><creatorcontrib>Wang, Junxiong</creatorcontrib><creatorcontrib>Jia, Kai</creatorcontrib><creatorcontrib>Ji, Guanjun</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Han, Zhiyuan</creatorcontrib><creatorcontrib>Piao, Zhihong</creatorcontrib><creatorcontrib>Gao, Runhua</creatorcontrib><creatorcontrib>Ji, Haocheng</creatorcontrib><creatorcontrib>Zhong, Xiongwei</creatorcontrib><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Cheng, Hui‐Ming</creatorcontrib><title>Ultrahigh‐Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification</title><title>Advanced materials (Weinheim)</title><description>Lithium cobalt oxide (LCO) is widely used in Li‐ion batteries due to its high volumetric energy density, which is generally charged to 4.3 V. Lifting the cut‐off voltage of LCO from 4.3 V to 4.7 V will increase the specific capacity from 150 to 230 mAh g‐1 with a significant improvement of 53%. However, LCO suffers serious problems of H1‐3/O1 phase transformation, unstable interface between cathode and electrolyte, and irreversible oxygen redox reaction at 4.7 V. Herein, interface stabilization and band structure modification are proposed to strengthen the crystal structure of LCO for stable cycling of LCO at an ultrahigh voltage of 4.7 V. Gradient distribution of magnesium and uniform doping of nickel in Li layers inhibit the harmful phase transitions of LCO, while uniform LiMgxNi1−xPO4 coating stabilizes the LCO‐electrolyte interface during cycles. Moreover, the modified band structure improves the oxygen redox reaction reversibility and electrochemical performance of the modified LCO. As a result, the modified LCO has a high capacity retention of 78% after 200 cycles at 4.7 V in the half cell and 63% after 500 cycles at 4.6 V in the full cell. This work makes the capacity of LCO one step closer to its theoretical specific capacity. The modified LCO has a gradient doping of Mg, uniform doping of Ni in Li layers, and uniform LiMgxNi1−xPO4 coating. The doping and coating simultaneously modify the band structure to improve the oxygen redox reversibility during cycles. Therefore, the modified LCO shows excellent cycling performance both at 4.6 V and 4.7 V.</description><subject>band structure</subject><subject>Band structure of solids</subject><subject>Cobalt oxides</subject><subject>Crystal structure</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>element doping</subject><subject>High voltages</subject><subject>high‐voltage LiCoO 2</subject><subject>interface stabilization</subject><subject>Lithium compounds</subject><subject>Lithium-ion batteries</subject><subject>Magnesium</subject><subject>Materials science</subject><subject>Oxygen</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Redox reactions</subject><subject>Stabilization</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkL9OwzAQhy0EEqWwMltiYUk5O3Zij6X8q9SqQ2lXy0mc1lWaFMcRKhOPwCPwLDwKT0JKUQduuNNP9-l0-hC6JNAjAPRGZ2vdo0ApocDlEeoQTknAQPJj1AEZ8kBGTJyis7peAYCMIOogNSu800u7WH6_f8yrwuuFwSM7qCYUa49ZL_76nONki4elNy7XqcFTrxNb2DftbVViXWb4dtem3jWpb5zB4yqzuU1_9-foJNdFbS7-ZhfNHu6fB0_BaPI4HPRHwSoMqQwoA5IxmbEohzgxWSKj1AhNiMmIyEWSg05YxGmseQ7MxFqkklLOBDG7SsIuut7f3bjqpTG1V2tbp6YodGmqplY0FsAEI1y26NU_dFU1rmy_U1S08lpJlLeU3FOvtjBbtXF2rd1WEVA72WonWx1kq_7duH9I4Q_t13ZT</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhuang, Zhaofeng</creator><creator>Wang, Junxiong</creator><creator>Jia, Kai</creator><creator>Ji, Guanjun</creator><creator>Ma, Jun</creator><creator>Han, Zhiyuan</creator><creator>Piao, Zhihong</creator><creator>Gao, Runhua</creator><creator>Ji, Haocheng</creator><creator>Zhong, Xiongwei</creator><creator>Zhou, Guangmin</creator><creator>Cheng, Hui‐Ming</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3629-5686</orcidid><orcidid>https://orcid.org/0000-0002-3791-8523</orcidid></search><sort><creationdate>20230601</creationdate><title>Ultrahigh‐Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification</title><author>Zhuang, Zhaofeng ; Wang, Junxiong ; Jia, Kai ; Ji, Guanjun ; Ma, Jun ; Han, Zhiyuan ; Piao, Zhihong ; Gao, Runhua ; Ji, Haocheng ; Zhong, Xiongwei ; Zhou, Guangmin ; Cheng, Hui‐Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3329-2401d49d46f07bedb96ce8a11ed18f8bf0ab46527a5f04e7a8c9225481eeeeeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>band structure</topic><topic>Band structure of solids</topic><topic>Cobalt oxides</topic><topic>Crystal structure</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>element doping</topic><topic>High voltages</topic><topic>high‐voltage LiCoO 2</topic><topic>interface stabilization</topic><topic>Lithium compounds</topic><topic>Lithium-ion batteries</topic><topic>Magnesium</topic><topic>Materials science</topic><topic>Oxygen</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Redox reactions</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Zhaofeng</creatorcontrib><creatorcontrib>Wang, Junxiong</creatorcontrib><creatorcontrib>Jia, Kai</creatorcontrib><creatorcontrib>Ji, Guanjun</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Han, Zhiyuan</creatorcontrib><creatorcontrib>Piao, Zhihong</creatorcontrib><creatorcontrib>Gao, Runhua</creatorcontrib><creatorcontrib>Ji, Haocheng</creatorcontrib><creatorcontrib>Zhong, Xiongwei</creatorcontrib><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Cheng, Hui‐Ming</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Zhaofeng</au><au>Wang, Junxiong</au><au>Jia, Kai</au><au>Ji, Guanjun</au><au>Ma, Jun</au><au>Han, Zhiyuan</au><au>Piao, Zhihong</au><au>Gao, Runhua</au><au>Ji, Haocheng</au><au>Zhong, Xiongwei</au><au>Zhou, Guangmin</au><au>Cheng, Hui‐Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh‐Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>22</issue><spage>e2212059</spage><epage>n/a</epage><pages>e2212059-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Lithium cobalt oxide (LCO) is widely used in Li‐ion batteries due to its high volumetric energy density, which is generally charged to 4.3 V. Lifting the cut‐off voltage of LCO from 4.3 V to 4.7 V will increase the specific capacity from 150 to 230 mAh g‐1 with a significant improvement of 53%. However, LCO suffers serious problems of H1‐3/O1 phase transformation, unstable interface between cathode and electrolyte, and irreversible oxygen redox reaction at 4.7 V. Herein, interface stabilization and band structure modification are proposed to strengthen the crystal structure of LCO for stable cycling of LCO at an ultrahigh voltage of 4.7 V. Gradient distribution of magnesium and uniform doping of nickel in Li layers inhibit the harmful phase transitions of LCO, while uniform LiMgxNi1−xPO4 coating stabilizes the LCO‐electrolyte interface during cycles. Moreover, the modified band structure improves the oxygen redox reaction reversibility and electrochemical performance of the modified LCO. As a result, the modified LCO has a high capacity retention of 78% after 200 cycles at 4.7 V in the half cell and 63% after 500 cycles at 4.6 V in the full cell. This work makes the capacity of LCO one step closer to its theoretical specific capacity. The modified LCO has a gradient doping of Mg, uniform doping of Ni in Li layers, and uniform LiMgxNi1−xPO4 coating. The doping and coating simultaneously modify the band structure to improve the oxygen redox reversibility during cycles. Therefore, the modified LCO shows excellent cycling performance both at 4.6 V and 4.7 V.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202212059</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3629-5686</orcidid><orcidid>https://orcid.org/0000-0002-3791-8523</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-06, Vol.35 (22), p.e2212059-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2780484159
source Wiley Online Library Journals Frontfile Complete
subjects band structure
Band structure of solids
Cobalt oxides
Crystal structure
Electric potential
Electrochemical analysis
Electrolytes
element doping
High voltages
high‐voltage LiCoO 2
interface stabilization
Lithium compounds
Lithium-ion batteries
Magnesium
Materials science
Oxygen
phase transition
Phase transitions
Redox reactions
Stabilization
title Ultrahigh‐Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%E2%80%90Voltage%20LiCoO2%20at%204.7%C2%A0V%20by%20Interface%20Stabilization%20and%20Band%20Structure%20Modification&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhuang,%20Zhaofeng&rft.date=2023-06-01&rft.volume=35&rft.issue=22&rft.spage=e2212059&rft.epage=n/a&rft.pages=e2212059-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202212059&rft_dat=%3Cproquest_wiley%3E2780484159%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821264825&rft_id=info:pmid/&rfr_iscdi=true