Biocompatibility and biofouling of MEMS drug delivery devices
The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8 TM photoresist,...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2003-05, Vol.24 (11), p.1959-1967 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1967 |
---|---|
container_issue | 11 |
container_start_page | 1959 |
container_title | Biomaterials |
container_volume | 24 |
creator | Voskerician, Gabriela Shive, Matthew S. Shawgo, Rebecca S. Recum, Horst von Anderson, James M. Cima, Michael J. Langer, Robert |
description | The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8
TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21
days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/μl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8
TM were comparable and statistically less (
p |
doi_str_mv | 10.1016/S0142-9612(02)00565-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27800836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961202005653</els_id><sourcerecordid>18741537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-92170e1605b4b090aba4fa02bc7f9ced2bcb3fb5e21c5bf5a476ab4191d7782f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMotlZ_grIn0cPqJJvs4yCipT6gxUP1HJJsUiK7TU12C_33prboURiYGfhmhvkQOsdwgwHnt3PAlKRVjskVkGsAlrM0O0BDXBZlyipgh2j4iwzQSQifEHug5BgNMMkxo2U-RHeP1inXrkRnpW1st0nEsk6kdcb1jV0uEmeS2WQ2T2rfL5JaN3at_SYWa6t0OEVHRjRBn-3zCH08Td7HL-n07fl1_DBNFaO4SyuCC9A4ByaphAqEFNQIIFIVplK6joXMjGSaYMWkYYIWuZAUV7guipKYbIQud3tX3n31OnS8tUHpphFL7frASVEClFn-LxjtUMyyIoJsByrvQvDa8JW3rfAbjoFvBfMfwXxrj0OMrWCexbmL_YFetrr-m9objcD9DtDRx9pqz4Oyehm_tF6rjtfO_nPiG0EeifU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18741537</pqid></control><display><type>article</type><title>Biocompatibility and biofouling of MEMS drug delivery devices</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Voskerician, Gabriela ; Shive, Matthew S. ; Shawgo, Rebecca S. ; Recum, Horst von ; Anderson, James M. ; Cima, Michael J. ; Langer, Robert</creator><creatorcontrib>Voskerician, Gabriela ; Shive, Matthew S. ; Shawgo, Rebecca S. ; Recum, Horst von ; Anderson, James M. ; Cima, Michael J. ; Langer, Robert</creatorcontrib><description>The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8
TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21
days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/μl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8
TM were comparable and statistically less (
p<0.05) than silicon. These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8
TM, and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8
TM showing reduced biofouling.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(02)00565-3</identifier><identifier>PMID: 12615486</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Back ; Biocompatibility ; Biocompatible Materials - adverse effects ; Biofouling ; Cell Adhesion ; Drug Delivery Systems - adverse effects ; Drug Delivery Systems - instrumentation ; Drug Delivery Systems - methods ; Drug Implants - adverse effects ; Electronics ; Exudate analysis ; Exudates and Transudates - immunology ; Exudates and Transudates - metabolism ; Female ; Foreign-Body Reaction - diagnosis ; Foreign-Body Reaction - etiology ; Leukocyte Count ; Material surface analysis ; Materials Testing - methods ; MEMS component materials ; Miniaturization ; Muscles ; Myositis - diagnosis ; Myositis - etiology ; Rats ; Rats, Sprague-Dawley ; Surface Properties</subject><ispartof>Biomaterials, 2003-05, Vol.24 (11), p.1959-1967</ispartof><rights>2003 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-92170e1605b4b090aba4fa02bc7f9ced2bcb3fb5e21c5bf5a476ab4191d7782f3</citedby><cites>FETCH-LOGICAL-c541t-92170e1605b4b090aba4fa02bc7f9ced2bcb3fb5e21c5bf5a476ab4191d7782f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0142-9612(02)00565-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12615486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voskerician, Gabriela</creatorcontrib><creatorcontrib>Shive, Matthew S.</creatorcontrib><creatorcontrib>Shawgo, Rebecca S.</creatorcontrib><creatorcontrib>Recum, Horst von</creatorcontrib><creatorcontrib>Anderson, James M.</creatorcontrib><creatorcontrib>Cima, Michael J.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><title>Biocompatibility and biofouling of MEMS drug delivery devices</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8
TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21
days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/μl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8
TM were comparable and statistically less (
p<0.05) than silicon. These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8
TM, and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8
TM showing reduced biofouling.</description><subject>Animals</subject><subject>Back</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - adverse effects</subject><subject>Biofouling</subject><subject>Cell Adhesion</subject><subject>Drug Delivery Systems - adverse effects</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Drug Delivery Systems - methods</subject><subject>Drug Implants - adverse effects</subject><subject>Electronics</subject><subject>Exudate analysis</subject><subject>Exudates and Transudates - immunology</subject><subject>Exudates and Transudates - metabolism</subject><subject>Female</subject><subject>Foreign-Body Reaction - diagnosis</subject><subject>Foreign-Body Reaction - etiology</subject><subject>Leukocyte Count</subject><subject>Material surface analysis</subject><subject>Materials Testing - methods</subject><subject>MEMS component materials</subject><subject>Miniaturization</subject><subject>Muscles</subject><subject>Myositis - diagnosis</subject><subject>Myositis - etiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Surface Properties</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEQgIMotlZ_grIn0cPqJJvs4yCipT6gxUP1HJJsUiK7TU12C_33prboURiYGfhmhvkQOsdwgwHnt3PAlKRVjskVkGsAlrM0O0BDXBZlyipgh2j4iwzQSQifEHug5BgNMMkxo2U-RHeP1inXrkRnpW1st0nEsk6kdcb1jV0uEmeS2WQ2T2rfL5JaN3at_SYWa6t0OEVHRjRBn-3zCH08Td7HL-n07fl1_DBNFaO4SyuCC9A4ByaphAqEFNQIIFIVplK6joXMjGSaYMWkYYIWuZAUV7guipKYbIQud3tX3n31OnS8tUHpphFL7frASVEClFn-LxjtUMyyIoJsByrvQvDa8JW3rfAbjoFvBfMfwXxrj0OMrWCexbmL_YFetrr-m9objcD9DtDRx9pqz4Oyehm_tF6rjtfO_nPiG0EeifU</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Voskerician, Gabriela</creator><creator>Shive, Matthew S.</creator><creator>Shawgo, Rebecca S.</creator><creator>Recum, Horst von</creator><creator>Anderson, James M.</creator><creator>Cima, Michael J.</creator><creator>Langer, Robert</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20030501</creationdate><title>Biocompatibility and biofouling of MEMS drug delivery devices</title><author>Voskerician, Gabriela ; Shive, Matthew S. ; Shawgo, Rebecca S. ; Recum, Horst von ; Anderson, James M. ; Cima, Michael J. ; Langer, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-92170e1605b4b090aba4fa02bc7f9ced2bcb3fb5e21c5bf5a476ab4191d7782f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Back</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - adverse effects</topic><topic>Biofouling</topic><topic>Cell Adhesion</topic><topic>Drug Delivery Systems - adverse effects</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Drug Delivery Systems - methods</topic><topic>Drug Implants - adverse effects</topic><topic>Electronics</topic><topic>Exudate analysis</topic><topic>Exudates and Transudates - immunology</topic><topic>Exudates and Transudates - metabolism</topic><topic>Female</topic><topic>Foreign-Body Reaction - diagnosis</topic><topic>Foreign-Body Reaction - etiology</topic><topic>Leukocyte Count</topic><topic>Material surface analysis</topic><topic>Materials Testing - methods</topic><topic>MEMS component materials</topic><topic>Miniaturization</topic><topic>Muscles</topic><topic>Myositis - diagnosis</topic><topic>Myositis - etiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voskerician, Gabriela</creatorcontrib><creatorcontrib>Shive, Matthew S.</creatorcontrib><creatorcontrib>Shawgo, Rebecca S.</creatorcontrib><creatorcontrib>Recum, Horst von</creatorcontrib><creatorcontrib>Anderson, James M.</creatorcontrib><creatorcontrib>Cima, Michael J.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voskerician, Gabriela</au><au>Shive, Matthew S.</au><au>Shawgo, Rebecca S.</au><au>Recum, Horst von</au><au>Anderson, James M.</au><au>Cima, Michael J.</au><au>Langer, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatibility and biofouling of MEMS drug delivery devices</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>24</volume><issue>11</issue><spage>1959</spage><epage>1967</epage><pages>1959-1967</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8
TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21
days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/μl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8
TM were comparable and statistically less (
p<0.05) than silicon. These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8
TM, and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8
TM showing reduced biofouling.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>12615486</pmid><doi>10.1016/S0142-9612(02)00565-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2003-05, Vol.24 (11), p.1959-1967 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_27800836 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Back Biocompatibility Biocompatible Materials - adverse effects Biofouling Cell Adhesion Drug Delivery Systems - adverse effects Drug Delivery Systems - instrumentation Drug Delivery Systems - methods Drug Implants - adverse effects Electronics Exudate analysis Exudates and Transudates - immunology Exudates and Transudates - metabolism Female Foreign-Body Reaction - diagnosis Foreign-Body Reaction - etiology Leukocyte Count Material surface analysis Materials Testing - methods MEMS component materials Miniaturization Muscles Myositis - diagnosis Myositis - etiology Rats Rats, Sprague-Dawley Surface Properties |
title | Biocompatibility and biofouling of MEMS drug delivery devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatibility%20and%20biofouling%20of%20MEMS%20drug%20delivery%20devices&rft.jtitle=Biomaterials&rft.au=Voskerician,%20Gabriela&rft.date=2003-05-01&rft.volume=24&rft.issue=11&rft.spage=1959&rft.epage=1967&rft.pages=1959-1967&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(02)00565-3&rft_dat=%3Cproquest_cross%3E18741537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18741537&rft_id=info:pmid/12615486&rft_els_id=S0142961202005653&rfr_iscdi=true |