Biocompatibility and biofouling of MEMS drug delivery devices

The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8 TM photoresist,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2003-05, Vol.24 (11), p.1959-1967
Hauptverfasser: Voskerician, Gabriela, Shive, Matthew S., Shawgo, Rebecca S., Recum, Horst von, Anderson, James M., Cima, Michael J., Langer, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1967
container_issue 11
container_start_page 1959
container_title Biomaterials
container_volume 24
creator Voskerician, Gabriela
Shive, Matthew S.
Shawgo, Rebecca S.
Recum, Horst von
Anderson, James M.
Cima, Michael J.
Langer, Robert
description The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8 TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21 days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/μl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8 TM were comparable and statistically less ( p
doi_str_mv 10.1016/S0142-9612(02)00565-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27800836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961202005653</els_id><sourcerecordid>18741537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-92170e1605b4b090aba4fa02bc7f9ced2bcb3fb5e21c5bf5a476ab4191d7782f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMotlZ_grIn0cPqJJvs4yCipT6gxUP1HJJsUiK7TU12C_33prboURiYGfhmhvkQOsdwgwHnt3PAlKRVjskVkGsAlrM0O0BDXBZlyipgh2j4iwzQSQifEHug5BgNMMkxo2U-RHeP1inXrkRnpW1st0nEsk6kdcb1jV0uEmeS2WQ2T2rfL5JaN3at_SYWa6t0OEVHRjRBn-3zCH08Td7HL-n07fl1_DBNFaO4SyuCC9A4ByaphAqEFNQIIFIVplK6joXMjGSaYMWkYYIWuZAUV7guipKYbIQud3tX3n31OnS8tUHpphFL7frASVEClFn-LxjtUMyyIoJsByrvQvDa8JW3rfAbjoFvBfMfwXxrj0OMrWCexbmL_YFetrr-m9objcD9DtDRx9pqz4Oyehm_tF6rjtfO_nPiG0EeifU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18741537</pqid></control><display><type>article</type><title>Biocompatibility and biofouling of MEMS drug delivery devices</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Voskerician, Gabriela ; Shive, Matthew S. ; Shawgo, Rebecca S. ; Recum, Horst von ; Anderson, James M. ; Cima, Michael J. ; Langer, Robert</creator><creatorcontrib>Voskerician, Gabriela ; Shive, Matthew S. ; Shawgo, Rebecca S. ; Recum, Horst von ; Anderson, James M. ; Cima, Michael J. ; Langer, Robert</creatorcontrib><description>The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8 TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21 days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/μl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8 TM were comparable and statistically less ( p&lt;0.05) than silicon. These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8 TM, and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8 TM showing reduced biofouling.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(02)00565-3</identifier><identifier>PMID: 12615486</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Back ; Biocompatibility ; Biocompatible Materials - adverse effects ; Biofouling ; Cell Adhesion ; Drug Delivery Systems - adverse effects ; Drug Delivery Systems - instrumentation ; Drug Delivery Systems - methods ; Drug Implants - adverse effects ; Electronics ; Exudate analysis ; Exudates and Transudates - immunology ; Exudates and Transudates - metabolism ; Female ; Foreign-Body Reaction - diagnosis ; Foreign-Body Reaction - etiology ; Leukocyte Count ; Material surface analysis ; Materials Testing - methods ; MEMS component materials ; Miniaturization ; Muscles ; Myositis - diagnosis ; Myositis - etiology ; Rats ; Rats, Sprague-Dawley ; Surface Properties</subject><ispartof>Biomaterials, 2003-05, Vol.24 (11), p.1959-1967</ispartof><rights>2003 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-92170e1605b4b090aba4fa02bc7f9ced2bcb3fb5e21c5bf5a476ab4191d7782f3</citedby><cites>FETCH-LOGICAL-c541t-92170e1605b4b090aba4fa02bc7f9ced2bcb3fb5e21c5bf5a476ab4191d7782f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0142-9612(02)00565-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12615486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voskerician, Gabriela</creatorcontrib><creatorcontrib>Shive, Matthew S.</creatorcontrib><creatorcontrib>Shawgo, Rebecca S.</creatorcontrib><creatorcontrib>Recum, Horst von</creatorcontrib><creatorcontrib>Anderson, James M.</creatorcontrib><creatorcontrib>Cima, Michael J.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><title>Biocompatibility and biofouling of MEMS drug delivery devices</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8 TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21 days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/μl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8 TM were comparable and statistically less ( p&lt;0.05) than silicon. These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8 TM, and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8 TM showing reduced biofouling.</description><subject>Animals</subject><subject>Back</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - adverse effects</subject><subject>Biofouling</subject><subject>Cell Adhesion</subject><subject>Drug Delivery Systems - adverse effects</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Drug Delivery Systems - methods</subject><subject>Drug Implants - adverse effects</subject><subject>Electronics</subject><subject>Exudate analysis</subject><subject>Exudates and Transudates - immunology</subject><subject>Exudates and Transudates - metabolism</subject><subject>Female</subject><subject>Foreign-Body Reaction - diagnosis</subject><subject>Foreign-Body Reaction - etiology</subject><subject>Leukocyte Count</subject><subject>Material surface analysis</subject><subject>Materials Testing - methods</subject><subject>MEMS component materials</subject><subject>Miniaturization</subject><subject>Muscles</subject><subject>Myositis - diagnosis</subject><subject>Myositis - etiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Surface Properties</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEQgIMotlZ_grIn0cPqJJvs4yCipT6gxUP1HJJsUiK7TU12C_33prboURiYGfhmhvkQOsdwgwHnt3PAlKRVjskVkGsAlrM0O0BDXBZlyipgh2j4iwzQSQifEHug5BgNMMkxo2U-RHeP1inXrkRnpW1st0nEsk6kdcb1jV0uEmeS2WQ2T2rfL5JaN3at_SYWa6t0OEVHRjRBn-3zCH08Td7HL-n07fl1_DBNFaO4SyuCC9A4ByaphAqEFNQIIFIVplK6joXMjGSaYMWkYYIWuZAUV7guipKYbIQud3tX3n31OnS8tUHpphFL7frASVEClFn-LxjtUMyyIoJsByrvQvDa8JW3rfAbjoFvBfMfwXxrj0OMrWCexbmL_YFetrr-m9objcD9DtDRx9pqz4Oyehm_tF6rjtfO_nPiG0EeifU</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Voskerician, Gabriela</creator><creator>Shive, Matthew S.</creator><creator>Shawgo, Rebecca S.</creator><creator>Recum, Horst von</creator><creator>Anderson, James M.</creator><creator>Cima, Michael J.</creator><creator>Langer, Robert</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20030501</creationdate><title>Biocompatibility and biofouling of MEMS drug delivery devices</title><author>Voskerician, Gabriela ; Shive, Matthew S. ; Shawgo, Rebecca S. ; Recum, Horst von ; Anderson, James M. ; Cima, Michael J. ; Langer, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-92170e1605b4b090aba4fa02bc7f9ced2bcb3fb5e21c5bf5a476ab4191d7782f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Back</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - adverse effects</topic><topic>Biofouling</topic><topic>Cell Adhesion</topic><topic>Drug Delivery Systems - adverse effects</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Drug Delivery Systems - methods</topic><topic>Drug Implants - adverse effects</topic><topic>Electronics</topic><topic>Exudate analysis</topic><topic>Exudates and Transudates - immunology</topic><topic>Exudates and Transudates - metabolism</topic><topic>Female</topic><topic>Foreign-Body Reaction - diagnosis</topic><topic>Foreign-Body Reaction - etiology</topic><topic>Leukocyte Count</topic><topic>Material surface analysis</topic><topic>Materials Testing - methods</topic><topic>MEMS component materials</topic><topic>Miniaturization</topic><topic>Muscles</topic><topic>Myositis - diagnosis</topic><topic>Myositis - etiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voskerician, Gabriela</creatorcontrib><creatorcontrib>Shive, Matthew S.</creatorcontrib><creatorcontrib>Shawgo, Rebecca S.</creatorcontrib><creatorcontrib>Recum, Horst von</creatorcontrib><creatorcontrib>Anderson, James M.</creatorcontrib><creatorcontrib>Cima, Michael J.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voskerician, Gabriela</au><au>Shive, Matthew S.</au><au>Shawgo, Rebecca S.</au><au>Recum, Horst von</au><au>Anderson, James M.</au><au>Cima, Michael J.</au><au>Langer, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatibility and biofouling of MEMS drug delivery devices</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>24</volume><issue>11</issue><spage>1959</spage><epage>1967</epage><pages>1959-1967</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8 TM photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21 days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/μl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8 TM were comparable and statistically less ( p&lt;0.05) than silicon. These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8 TM, and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8 TM showing reduced biofouling.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>12615486</pmid><doi>10.1016/S0142-9612(02)00565-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2003-05, Vol.24 (11), p.1959-1967
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_27800836
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Back
Biocompatibility
Biocompatible Materials - adverse effects
Biofouling
Cell Adhesion
Drug Delivery Systems - adverse effects
Drug Delivery Systems - instrumentation
Drug Delivery Systems - methods
Drug Implants - adverse effects
Electronics
Exudate analysis
Exudates and Transudates - immunology
Exudates and Transudates - metabolism
Female
Foreign-Body Reaction - diagnosis
Foreign-Body Reaction - etiology
Leukocyte Count
Material surface analysis
Materials Testing - methods
MEMS component materials
Miniaturization
Muscles
Myositis - diagnosis
Myositis - etiology
Rats
Rats, Sprague-Dawley
Surface Properties
title Biocompatibility and biofouling of MEMS drug delivery devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatibility%20and%20biofouling%20of%20MEMS%20drug%20delivery%20devices&rft.jtitle=Biomaterials&rft.au=Voskerician,%20Gabriela&rft.date=2003-05-01&rft.volume=24&rft.issue=11&rft.spage=1959&rft.epage=1967&rft.pages=1959-1967&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(02)00565-3&rft_dat=%3Cproquest_cross%3E18741537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18741537&rft_id=info:pmid/12615486&rft_els_id=S0142961202005653&rfr_iscdi=true