Modeling the zinc effect on OsASR5‐STAR1 promoter interaction by molecular dynamics

Intrinsically disordered proteins (IDPs) have numerous dynamic conformations. Given the difficulties in tracking temporarily folded states of this kind of protein, methods such as molecular modeling and molecular dynamics (MD) simulations make the process less costly, less laborious, and more detail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2023-07, Vol.91 (7), p.944-955
Hauptverfasser: Barros, Nicolle Louise Ferreira, Siqueira, Andrei Santos, Arenhart, Rafael Augusto, Margis‐Pinheiro, Marcia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 955
container_issue 7
container_start_page 944
container_title Proteins, structure, function, and bioinformatics
container_volume 91
creator Barros, Nicolle Louise Ferreira
Siqueira, Andrei Santos
Arenhart, Rafael Augusto
Margis‐Pinheiro, Marcia
description Intrinsically disordered proteins (IDPs) have numerous dynamic conformations. Given the difficulties in tracking temporarily folded states of this kind of protein, methods such as molecular modeling and molecular dynamics (MD) simulations make the process less costly, less laborious, and more detailed. Few plant IDPs have been characterized so far, such as proteins from the Abscisic acid, Stress and Ripening (ASR) family. The present work applied, for the first time, the two above‐mentioned tools to test the feasibility of determining a three‐dimensional transition model of OsASR5 and to investigate the relationship between OsASR5 and zinc. We found that one of OsASR5's conformers contains α‐helices, turns, and loops and that the metal binding resulted in a predominance of α‐helix. This stability is possibly imperative for the transcription factor activity. The promoter region of a sugar transporter was chosen to test this hypothesis and free energy calculations showed how the ion is mandatory for this complex formation. The results produced here aim to clarify which conformation the protein in the bound state assumes and which residues are involved in the process, besides developing the understanding of how the flexibility of these proteins can contribute to the response to environmental stresses.
doi_str_mv 10.1002/prot.26481
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780079809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780079809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-5d203b49ae0446fad0fb2456d2d014399bbb37ddd400193c8043dcf528ec6d5b3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgitbqxgeQgBsRRk9uM5llKd6gUmnrOswkGY3MRSczSF35CD6jT2Jq1YULNydn8fHn8CN0QOCUANCzp7bpTmnMJdlAAwJpEgFhfBMNQMokYkKKHbTr_SMAxCmLt9EOiyUPOx-gu5vG2NLV97h7sPjV1RrborC6w02Np340n4mPt_f5YjQjOPxTNZ1tsavDzHTngsmXuGpKq_sya7FZ1lnltN9DW0VWerv__Q7R3cX5YnwVTaaX1-PRJNJMJCQShgLLeZpZ4DwuMgNFTrmIDTVAOEvTPM9ZYozhACRlWgJnRheCSqtjI3I2RMfr3HDac299pyrntS3LrLZN7xVNJECSSkgDPfpDH5u-rcN1ikpKiQAONKiTtdJt431rC_XUuiprl4qAWpWtVmWrr7IDPvyO7PPKml_6024AZA1eXGmX_0Sp29l0sQ79BJD_ibk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822150402</pqid></control><display><type>article</type><title>Modeling the zinc effect on OsASR5‐STAR1 promoter interaction by molecular dynamics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barros, Nicolle Louise Ferreira ; Siqueira, Andrei Santos ; Arenhart, Rafael Augusto ; Margis‐Pinheiro, Marcia</creator><creatorcontrib>Barros, Nicolle Louise Ferreira ; Siqueira, Andrei Santos ; Arenhart, Rafael Augusto ; Margis‐Pinheiro, Marcia</creatorcontrib><description>Intrinsically disordered proteins (IDPs) have numerous dynamic conformations. Given the difficulties in tracking temporarily folded states of this kind of protein, methods such as molecular modeling and molecular dynamics (MD) simulations make the process less costly, less laborious, and more detailed. Few plant IDPs have been characterized so far, such as proteins from the Abscisic acid, Stress and Ripening (ASR) family. The present work applied, for the first time, the two above‐mentioned tools to test the feasibility of determining a three‐dimensional transition model of OsASR5 and to investigate the relationship between OsASR5 and zinc. We found that one of OsASR5's conformers contains α‐helices, turns, and loops and that the metal binding resulted in a predominance of α‐helix. This stability is possibly imperative for the transcription factor activity. The promoter region of a sugar transporter was chosen to test this hypothesis and free energy calculations showed how the ion is mandatory for this complex formation. The results produced here aim to clarify which conformation the protein in the bound state assumes and which residues are involved in the process, besides developing the understanding of how the flexibility of these proteins can contribute to the response to environmental stresses.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.26481</identifier><identifier>PMID: 36840694</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Abscisic acid ; ASR proteins ; Complex formation ; Entropy ; Environmental stress ; Free energy ; Helices ; intrinsically disordered proteins ; Intrinsically Disordered Proteins - chemistry ; metal–ligand ; Modelling ; Molecular dynamics ; Molecular Dynamics Simulation ; molecular modeling ; Molecular modelling ; Promoter Regions, Genetic ; Protein Conformation ; Protein structure ; Proteins ; protein‐DNA interaction ; Ripening ; Zinc</subject><ispartof>Proteins, structure, function, and bioinformatics, 2023-07, Vol.91 (7), p.944-955</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-5d203b49ae0446fad0fb2456d2d014399bbb37ddd400193c8043dcf528ec6d5b3</citedby><cites>FETCH-LOGICAL-c3571-5d203b49ae0446fad0fb2456d2d014399bbb37ddd400193c8043dcf528ec6d5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.26481$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.26481$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36840694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barros, Nicolle Louise Ferreira</creatorcontrib><creatorcontrib>Siqueira, Andrei Santos</creatorcontrib><creatorcontrib>Arenhart, Rafael Augusto</creatorcontrib><creatorcontrib>Margis‐Pinheiro, Marcia</creatorcontrib><title>Modeling the zinc effect on OsASR5‐STAR1 promoter interaction by molecular dynamics</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Intrinsically disordered proteins (IDPs) have numerous dynamic conformations. Given the difficulties in tracking temporarily folded states of this kind of protein, methods such as molecular modeling and molecular dynamics (MD) simulations make the process less costly, less laborious, and more detailed. Few plant IDPs have been characterized so far, such as proteins from the Abscisic acid, Stress and Ripening (ASR) family. The present work applied, for the first time, the two above‐mentioned tools to test the feasibility of determining a three‐dimensional transition model of OsASR5 and to investigate the relationship between OsASR5 and zinc. We found that one of OsASR5's conformers contains α‐helices, turns, and loops and that the metal binding resulted in a predominance of α‐helix. This stability is possibly imperative for the transcription factor activity. The promoter region of a sugar transporter was chosen to test this hypothesis and free energy calculations showed how the ion is mandatory for this complex formation. The results produced here aim to clarify which conformation the protein in the bound state assumes and which residues are involved in the process, besides developing the understanding of how the flexibility of these proteins can contribute to the response to environmental stresses.</description><subject>Abscisic acid</subject><subject>ASR proteins</subject><subject>Complex formation</subject><subject>Entropy</subject><subject>Environmental stress</subject><subject>Free energy</subject><subject>Helices</subject><subject>intrinsically disordered proteins</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>metal–ligand</subject><subject>Modelling</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>molecular modeling</subject><subject>Molecular modelling</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>protein‐DNA interaction</subject><subject>Ripening</subject><subject>Zinc</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKAzEUBuAgitbqxgeQgBsRRk9uM5llKd6gUmnrOswkGY3MRSczSF35CD6jT2Jq1YULNydn8fHn8CN0QOCUANCzp7bpTmnMJdlAAwJpEgFhfBMNQMokYkKKHbTr_SMAxCmLt9EOiyUPOx-gu5vG2NLV97h7sPjV1RrborC6w02Np340n4mPt_f5YjQjOPxTNZ1tsavDzHTngsmXuGpKq_sya7FZ1lnltN9DW0VWerv__Q7R3cX5YnwVTaaX1-PRJNJMJCQShgLLeZpZ4DwuMgNFTrmIDTVAOEvTPM9ZYozhACRlWgJnRheCSqtjI3I2RMfr3HDac299pyrntS3LrLZN7xVNJECSSkgDPfpDH5u-rcN1ikpKiQAONKiTtdJt431rC_XUuiprl4qAWpWtVmWrr7IDPvyO7PPKml_6024AZA1eXGmX_0Sp29l0sQ79BJD_ibk</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Barros, Nicolle Louise Ferreira</creator><creator>Siqueira, Andrei Santos</creator><creator>Arenhart, Rafael Augusto</creator><creator>Margis‐Pinheiro, Marcia</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>202307</creationdate><title>Modeling the zinc effect on OsASR5‐STAR1 promoter interaction by molecular dynamics</title><author>Barros, Nicolle Louise Ferreira ; Siqueira, Andrei Santos ; Arenhart, Rafael Augusto ; Margis‐Pinheiro, Marcia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-5d203b49ae0446fad0fb2456d2d014399bbb37ddd400193c8043dcf528ec6d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abscisic acid</topic><topic>ASR proteins</topic><topic>Complex formation</topic><topic>Entropy</topic><topic>Environmental stress</topic><topic>Free energy</topic><topic>Helices</topic><topic>intrinsically disordered proteins</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>metal–ligand</topic><topic>Modelling</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>molecular modeling</topic><topic>Molecular modelling</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>protein‐DNA interaction</topic><topic>Ripening</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barros, Nicolle Louise Ferreira</creatorcontrib><creatorcontrib>Siqueira, Andrei Santos</creatorcontrib><creatorcontrib>Arenhart, Rafael Augusto</creatorcontrib><creatorcontrib>Margis‐Pinheiro, Marcia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barros, Nicolle Louise Ferreira</au><au>Siqueira, Andrei Santos</au><au>Arenhart, Rafael Augusto</au><au>Margis‐Pinheiro, Marcia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the zinc effect on OsASR5‐STAR1 promoter interaction by molecular dynamics</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2023-07</date><risdate>2023</risdate><volume>91</volume><issue>7</issue><spage>944</spage><epage>955</epage><pages>944-955</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>Intrinsically disordered proteins (IDPs) have numerous dynamic conformations. Given the difficulties in tracking temporarily folded states of this kind of protein, methods such as molecular modeling and molecular dynamics (MD) simulations make the process less costly, less laborious, and more detailed. Few plant IDPs have been characterized so far, such as proteins from the Abscisic acid, Stress and Ripening (ASR) family. The present work applied, for the first time, the two above‐mentioned tools to test the feasibility of determining a three‐dimensional transition model of OsASR5 and to investigate the relationship between OsASR5 and zinc. We found that one of OsASR5's conformers contains α‐helices, turns, and loops and that the metal binding resulted in a predominance of α‐helix. This stability is possibly imperative for the transcription factor activity. The promoter region of a sugar transporter was chosen to test this hypothesis and free energy calculations showed how the ion is mandatory for this complex formation. The results produced here aim to clarify which conformation the protein in the bound state assumes and which residues are involved in the process, besides developing the understanding of how the flexibility of these proteins can contribute to the response to environmental stresses.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36840694</pmid><doi>10.1002/prot.26481</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2023-07, Vol.91 (7), p.944-955
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_2780079809
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Abscisic acid
ASR proteins
Complex formation
Entropy
Environmental stress
Free energy
Helices
intrinsically disordered proteins
Intrinsically Disordered Proteins - chemistry
metal–ligand
Modelling
Molecular dynamics
Molecular Dynamics Simulation
molecular modeling
Molecular modelling
Promoter Regions, Genetic
Protein Conformation
Protein structure
Proteins
protein‐DNA interaction
Ripening
Zinc
title Modeling the zinc effect on OsASR5‐STAR1 promoter interaction by molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20zinc%20effect%20on%20OsASR5%E2%80%90STAR1%20promoter%20interaction%20by%20molecular%20dynamics&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Barros,%20Nicolle%20Louise%20Ferreira&rft.date=2023-07&rft.volume=91&rft.issue=7&rft.spage=944&rft.epage=955&rft.pages=944-955&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.26481&rft_dat=%3Cproquest_cross%3E2780079809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822150402&rft_id=info:pmid/36840694&rfr_iscdi=true