Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures
Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a hi...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-03, Vol.17 (5), p.4704-4715 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4715 |
---|---|
container_issue | 5 |
container_start_page | 4704 |
container_title | ACS nano |
container_volume | 17 |
creator | Porrati, Fabrizio Barth, Sven Gazzadi, Gian Carlo Frabboni, Stefano Volkov, Oleksii M. Makarov, Denys Huth, Michael |
description | Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a high flexibility and unmatched accuracy in 3D writing with a wide material portfolio, thereby allowing for the growth of metallic to insulating materials. The combination of the free-shaped 3D nanowriting with established chemical vapor deposition (CVD) techniques provides attractive opportunities to synthesize complex 3D core–shell heterostructures. Hence, this hybrid approach enables the fabrication of morphologically tunable layer-based nanostructures with the great potential of unlocking further functionalities. Here, the fundamentals of such a hybrid approach are demonstrated by preparing core–shell heterostructures using 3D FEBID scaffolds for site-selective CVD. In particular, 3D microbridges are printed by FEBID with the (CH3)3CH3C5H4Pt precursor and coated by thermal CVD using the Nb(NMe2)3(N-t-Bu) and HFeCo3(CO)12 precursors. Two model systems on the basis of CVD layers consisting of a superconducting NbC-based layer and a ferromagnetic Co3Fe layer are prepared and characterized with regard to their composition, microstructure, and magneto-transport properties. |
doi_str_mv | 10.1021/acsnano.2c10968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780069816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780069816</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-63e5abee4ed5c381fb8ad4c2a8c44f388e3a4ee3d6685b84633aabe40873819a3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMo7rp69iY9CtLdpEnT7FF2_YJVD-vXLaTplM3SNjVpBf97I1v3JgzMDPzeG-YhdE7wlOCEzJT2jWrsNNEEz7k4QGMypzzGgn8c7ueUjNCJ91uM00xk_BiNKBcJFywbo8e16SBeQwW6M18QLTZQG62q6E211kVLaK03nbFNFGppXMDidxc0EV1GT-G0cnoTVt31DvwpOipV5eFs6BP0envzsriPV893D4vrVawopV3MKaQqB2BQpJoKUuZCFUwnSmjGSioEUMUAaMG5SHPBOKUq8AyLLNBzRSfocufbOvvZg-9kbbyGqlIN2N7LJBMY87kgPKCzHaqd9d5BKVtnauW-JcHyN0M5ZCiHDIPiYjDv8xqKPf8XWgCudkBQyq3tXRN-_dfuByDzfWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780069816</pqid></control><display><type>article</type><title>Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures</title><source>ACS Publications</source><creator>Porrati, Fabrizio ; Barth, Sven ; Gazzadi, Gian Carlo ; Frabboni, Stefano ; Volkov, Oleksii M. ; Makarov, Denys ; Huth, Michael</creator><creatorcontrib>Porrati, Fabrizio ; Barth, Sven ; Gazzadi, Gian Carlo ; Frabboni, Stefano ; Volkov, Oleksii M. ; Makarov, Denys ; Huth, Michael</creatorcontrib><description>Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a high flexibility and unmatched accuracy in 3D writing with a wide material portfolio, thereby allowing for the growth of metallic to insulating materials. The combination of the free-shaped 3D nanowriting with established chemical vapor deposition (CVD) techniques provides attractive opportunities to synthesize complex 3D core–shell heterostructures. Hence, this hybrid approach enables the fabrication of morphologically tunable layer-based nanostructures with the great potential of unlocking further functionalities. Here, the fundamentals of such a hybrid approach are demonstrated by preparing core–shell heterostructures using 3D FEBID scaffolds for site-selective CVD. In particular, 3D microbridges are printed by FEBID with the (CH3)3CH3C5H4Pt precursor and coated by thermal CVD using the Nb(NMe2)3(N-t-Bu) and HFeCo3(CO)12 precursors. Two model systems on the basis of CVD layers consisting of a superconducting NbC-based layer and a ferromagnetic Co3Fe layer are prepared and characterized with regard to their composition, microstructure, and magneto-transport properties.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c10968</identifier><identifier>PMID: 36826847</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2023-03, Vol.17 (5), p.4704-4715</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-63e5abee4ed5c381fb8ad4c2a8c44f388e3a4ee3d6685b84633aabe40873819a3</citedby><cites>FETCH-LOGICAL-a333t-63e5abee4ed5c381fb8ad4c2a8c44f388e3a4ee3d6685b84633aabe40873819a3</cites><orcidid>0000-0003-3900-2487 ; 0000-0003-1925-9437 ; 0000-0001-7415-465X ; 0000-0002-7177-4308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c10968$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c10968$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36826847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Porrati, Fabrizio</creatorcontrib><creatorcontrib>Barth, Sven</creatorcontrib><creatorcontrib>Gazzadi, Gian Carlo</creatorcontrib><creatorcontrib>Frabboni, Stefano</creatorcontrib><creatorcontrib>Volkov, Oleksii M.</creatorcontrib><creatorcontrib>Makarov, Denys</creatorcontrib><creatorcontrib>Huth, Michael</creatorcontrib><title>Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a high flexibility and unmatched accuracy in 3D writing with a wide material portfolio, thereby allowing for the growth of metallic to insulating materials. The combination of the free-shaped 3D nanowriting with established chemical vapor deposition (CVD) techniques provides attractive opportunities to synthesize complex 3D core–shell heterostructures. Hence, this hybrid approach enables the fabrication of morphologically tunable layer-based nanostructures with the great potential of unlocking further functionalities. Here, the fundamentals of such a hybrid approach are demonstrated by preparing core–shell heterostructures using 3D FEBID scaffolds for site-selective CVD. In particular, 3D microbridges are printed by FEBID with the (CH3)3CH3C5H4Pt precursor and coated by thermal CVD using the Nb(NMe2)3(N-t-Bu) and HFeCo3(CO)12 precursors. Two model systems on the basis of CVD layers consisting of a superconducting NbC-based layer and a ferromagnetic Co3Fe layer are prepared and characterized with regard to their composition, microstructure, and magneto-transport properties.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMo7rp69iY9CtLdpEnT7FF2_YJVD-vXLaTplM3SNjVpBf97I1v3JgzMDPzeG-YhdE7wlOCEzJT2jWrsNNEEz7k4QGMypzzGgn8c7ueUjNCJ91uM00xk_BiNKBcJFywbo8e16SBeQwW6M18QLTZQG62q6E211kVLaK03nbFNFGppXMDidxc0EV1GT-G0cnoTVt31DvwpOipV5eFs6BP0envzsriPV893D4vrVawopV3MKaQqB2BQpJoKUuZCFUwnSmjGSioEUMUAaMG5SHPBOKUq8AyLLNBzRSfocufbOvvZg-9kbbyGqlIN2N7LJBMY87kgPKCzHaqd9d5BKVtnauW-JcHyN0M5ZCiHDIPiYjDv8xqKPf8XWgCudkBQyq3tXRN-_dfuByDzfWs</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>Porrati, Fabrizio</creator><creator>Barth, Sven</creator><creator>Gazzadi, Gian Carlo</creator><creator>Frabboni, Stefano</creator><creator>Volkov, Oleksii M.</creator><creator>Makarov, Denys</creator><creator>Huth, Michael</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3900-2487</orcidid><orcidid>https://orcid.org/0000-0003-1925-9437</orcidid><orcidid>https://orcid.org/0000-0001-7415-465X</orcidid><orcidid>https://orcid.org/0000-0002-7177-4308</orcidid></search><sort><creationdate>20230314</creationdate><title>Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures</title><author>Porrati, Fabrizio ; Barth, Sven ; Gazzadi, Gian Carlo ; Frabboni, Stefano ; Volkov, Oleksii M. ; Makarov, Denys ; Huth, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-63e5abee4ed5c381fb8ad4c2a8c44f388e3a4ee3d6685b84633aabe40873819a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porrati, Fabrizio</creatorcontrib><creatorcontrib>Barth, Sven</creatorcontrib><creatorcontrib>Gazzadi, Gian Carlo</creatorcontrib><creatorcontrib>Frabboni, Stefano</creatorcontrib><creatorcontrib>Volkov, Oleksii M.</creatorcontrib><creatorcontrib>Makarov, Denys</creatorcontrib><creatorcontrib>Huth, Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porrati, Fabrizio</au><au>Barth, Sven</au><au>Gazzadi, Gian Carlo</au><au>Frabboni, Stefano</au><au>Volkov, Oleksii M.</au><au>Makarov, Denys</au><au>Huth, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-03-14</date><risdate>2023</risdate><volume>17</volume><issue>5</issue><spage>4704</spage><epage>4715</epage><pages>4704-4715</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a high flexibility and unmatched accuracy in 3D writing with a wide material portfolio, thereby allowing for the growth of metallic to insulating materials. The combination of the free-shaped 3D nanowriting with established chemical vapor deposition (CVD) techniques provides attractive opportunities to synthesize complex 3D core–shell heterostructures. Hence, this hybrid approach enables the fabrication of morphologically tunable layer-based nanostructures with the great potential of unlocking further functionalities. Here, the fundamentals of such a hybrid approach are demonstrated by preparing core–shell heterostructures using 3D FEBID scaffolds for site-selective CVD. In particular, 3D microbridges are printed by FEBID with the (CH3)3CH3C5H4Pt precursor and coated by thermal CVD using the Nb(NMe2)3(N-t-Bu) and HFeCo3(CO)12 precursors. Two model systems on the basis of CVD layers consisting of a superconducting NbC-based layer and a ferromagnetic Co3Fe layer are prepared and characterized with regard to their composition, microstructure, and magneto-transport properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36826847</pmid><doi>10.1021/acsnano.2c10968</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3900-2487</orcidid><orcidid>https://orcid.org/0000-0003-1925-9437</orcidid><orcidid>https://orcid.org/0000-0001-7415-465X</orcidid><orcidid>https://orcid.org/0000-0002-7177-4308</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2023-03, Vol.17 (5), p.4704-4715 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2780069816 |
source | ACS Publications |
title | Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-Selective%20Chemical%20Vapor%20Deposition%20on%20Direct-Write%203D%20Nanoarchitectures&rft.jtitle=ACS%20nano&rft.au=Porrati,%20Fabrizio&rft.date=2023-03-14&rft.volume=17&rft.issue=5&rft.spage=4704&rft.epage=4715&rft.pages=4704-4715&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c10968&rft_dat=%3Cproquest_cross%3E2780069816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780069816&rft_id=info:pmid/36826847&rfr_iscdi=true |