Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes

Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Corre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetic epidemiology 2023-06, Vol.47 (4), p.303-313
Hauptverfasser: Shoaib, Muhammad, Ye, Qiang, IglayReger, Heidi, Tan, Meng H., Boehnke, Michael, Burant, Charles F., Soleimanpour, Scott A., Gagliano Taliun, Sarah A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 4
container_start_page 303
container_title Genetic epidemiology
container_volume 47
creator Shoaib, Muhammad
Ye, Qiang
IglayReger, Heidi
Tan, Meng H.
Boehnke, Michael
Burant, Charles F.
Soleimanpour, Scott A.
Gagliano Taliun, Sarah A.
description Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non‐UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.
doi_str_mv 10.1002/gepi.22521
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780065303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816712358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3931-d20e16a8228db87d948ca71ece785d28b7c07aec9d6cdc69028fd0bc606cf2823</originalsourceid><addsrcrecordid>eNp90M9L5TAQB_AgLuvT3Yt_gAS8iFCdTF-b9Cjy_AHCelD2GNJkKtG-piat8v77rVY9eNjTDMyHL8OXsX0BJwIATx-o9yeIBYotthBQqQxR4jZbgFyKDPKq2GG7KT0CCLGsip9sJy8VCqnUgv1dvZh2NIMPHQ8N70O7eaDOWx59euLJhkiJD4E73zQUqRu8GYjXNLwSdXzY9MQFN52bV5ycmY6UfrEfjWkT_f6Ye-z-YnV3fpXd_Lm8Pj-7yWxe5SJzCCRKoxCVq5V01VJZIwVZkqpwqGppQRqylSuts2UFqBoHtS2htA0qzPfY0Zzbx_A8Uhr02idLbWs6CmPSKBVAWeSQT_TwG30MY-ym7zQqUUqBeaEmdTwrG0NKkRrdR782caMF6Le69Vvd-r3uCR98RI71mtwX_ex3AmIGr76lzX-i9OXq9noO_QdQBYnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816712358</pqid></control><display><type>article</type><title>Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Shoaib, Muhammad ; Ye, Qiang ; IglayReger, Heidi ; Tan, Meng H. ; Boehnke, Michael ; Burant, Charles F. ; Soleimanpour, Scott A. ; Gagliano Taliun, Sarah A.</creator><creatorcontrib>Shoaib, Muhammad ; Ye, Qiang ; IglayReger, Heidi ; Tan, Meng H. ; Boehnke, Michael ; Burant, Charles F. ; Soleimanpour, Scott A. ; Gagliano Taliun, Sarah A.</creatorcontrib><description>Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non‐UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.</description><identifier>ISSN: 0741-0395</identifier><identifier>ISSN: 1098-2272</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.22521</identifier><identifier>PMID: 36821788</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 1 - genetics ; Diabetes Mellitus, Type 2 - diagnosis ; Diabetes Mellitus, Type 2 - genetics ; Genetic Predisposition to Disease ; Genome-Wide Association Study ; GWAS ; Humans ; Models, Genetic ; Multifactorial Inheritance - genetics ; polygenic risk scores ; Risk Factors ; Single-nucleotide polymorphism ; Statistical analysis ; type 1 diabetes ; type 2 diabetes ; UK Biobank</subject><ispartof>Genetic epidemiology, 2023-06, Vol.47 (4), p.303-313</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Genetic Epidemiology published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3931-d20e16a8228db87d948ca71ece785d28b7c07aec9d6cdc69028fd0bc606cf2823</citedby><cites>FETCH-LOGICAL-c3931-d20e16a8228db87d948ca71ece785d28b7c07aec9d6cdc69028fd0bc606cf2823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgepi.22521$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgepi.22521$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36821788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Ye, Qiang</creatorcontrib><creatorcontrib>IglayReger, Heidi</creatorcontrib><creatorcontrib>Tan, Meng H.</creatorcontrib><creatorcontrib>Boehnke, Michael</creatorcontrib><creatorcontrib>Burant, Charles F.</creatorcontrib><creatorcontrib>Soleimanpour, Scott A.</creatorcontrib><creatorcontrib>Gagliano Taliun, Sarah A.</creatorcontrib><title>Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes</title><title>Genetic epidemiology</title><addtitle>Genet Epidemiol</addtitle><description>Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non‐UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.</description><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - genetics</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-Wide Association Study</subject><subject>GWAS</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Multifactorial Inheritance - genetics</subject><subject>polygenic risk scores</subject><subject>Risk Factors</subject><subject>Single-nucleotide polymorphism</subject><subject>Statistical analysis</subject><subject>type 1 diabetes</subject><subject>type 2 diabetes</subject><subject>UK Biobank</subject><issn>0741-0395</issn><issn>1098-2272</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp90M9L5TAQB_AgLuvT3Yt_gAS8iFCdTF-b9Cjy_AHCelD2GNJkKtG-piat8v77rVY9eNjTDMyHL8OXsX0BJwIATx-o9yeIBYotthBQqQxR4jZbgFyKDPKq2GG7KT0CCLGsip9sJy8VCqnUgv1dvZh2NIMPHQ8N70O7eaDOWx59euLJhkiJD4E73zQUqRu8GYjXNLwSdXzY9MQFN52bV5ycmY6UfrEfjWkT_f6Ye-z-YnV3fpXd_Lm8Pj-7yWxe5SJzCCRKoxCVq5V01VJZIwVZkqpwqGppQRqylSuts2UFqBoHtS2htA0qzPfY0Zzbx_A8Uhr02idLbWs6CmPSKBVAWeSQT_TwG30MY-ym7zQqUUqBeaEmdTwrG0NKkRrdR782caMF6Le69Vvd-r3uCR98RI71mtwX_ex3AmIGr76lzX-i9OXq9noO_QdQBYnA</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Shoaib, Muhammad</creator><creator>Ye, Qiang</creator><creator>IglayReger, Heidi</creator><creator>Tan, Meng H.</creator><creator>Boehnke, Michael</creator><creator>Burant, Charles F.</creator><creator>Soleimanpour, Scott A.</creator><creator>Gagliano Taliun, Sarah A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>202306</creationdate><title>Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes</title><author>Shoaib, Muhammad ; Ye, Qiang ; IglayReger, Heidi ; Tan, Meng H. ; Boehnke, Michael ; Burant, Charles F. ; Soleimanpour, Scott A. ; Gagliano Taliun, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3931-d20e16a8228db87d948ca71ece785d28b7c07aec9d6cdc69028fd0bc606cf2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - genetics</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-Wide Association Study</topic><topic>GWAS</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Multifactorial Inheritance - genetics</topic><topic>polygenic risk scores</topic><topic>Risk Factors</topic><topic>Single-nucleotide polymorphism</topic><topic>Statistical analysis</topic><topic>type 1 diabetes</topic><topic>type 2 diabetes</topic><topic>UK Biobank</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Ye, Qiang</creatorcontrib><creatorcontrib>IglayReger, Heidi</creatorcontrib><creatorcontrib>Tan, Meng H.</creatorcontrib><creatorcontrib>Boehnke, Michael</creatorcontrib><creatorcontrib>Burant, Charles F.</creatorcontrib><creatorcontrib>Soleimanpour, Scott A.</creatorcontrib><creatorcontrib>Gagliano Taliun, Sarah A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoaib, Muhammad</au><au>Ye, Qiang</au><au>IglayReger, Heidi</au><au>Tan, Meng H.</au><au>Boehnke, Michael</au><au>Burant, Charles F.</au><au>Soleimanpour, Scott A.</au><au>Gagliano Taliun, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet Epidemiol</addtitle><date>2023-06</date><risdate>2023</risdate><volume>47</volume><issue>4</issue><spage>303</spage><epage>313</epage><pages>303-313</pages><issn>0741-0395</issn><issn>1098-2272</issn><eissn>1098-2272</eissn><abstract>Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non‐UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36821788</pmid><doi>10.1002/gepi.22521</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-0395
ispartof Genetic epidemiology, 2023-06, Vol.47 (4), p.303-313
issn 0741-0395
1098-2272
1098-2272
language eng
recordid cdi_proquest_miscellaneous_2780065303
source MEDLINE; Wiley Journals
subjects Diabetes
Diabetes mellitus (insulin dependent)
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 1 - genetics
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - genetics
Genetic Predisposition to Disease
Genome-Wide Association Study
GWAS
Humans
Models, Genetic
Multifactorial Inheritance - genetics
polygenic risk scores
Risk Factors
Single-nucleotide polymorphism
Statistical analysis
type 1 diabetes
type 2 diabetes
UK Biobank
title Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20polygenic%20risk%20scores%20to%20differentiate%20between%20type%201%20and%20type%202%20diabetes&rft.jtitle=Genetic%20epidemiology&rft.au=Shoaib,%20Muhammad&rft.date=2023-06&rft.volume=47&rft.issue=4&rft.spage=303&rft.epage=313&rft.pages=303-313&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.22521&rft_dat=%3Cproquest_cross%3E2816712358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816712358&rft_id=info:pmid/36821788&rfr_iscdi=true