Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes
Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Corre...
Gespeichert in:
Veröffentlicht in: | Genetic epidemiology 2023-06, Vol.47 (4), p.303-313 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 4 |
container_start_page | 303 |
container_title | Genetic epidemiology |
container_volume | 47 |
creator | Shoaib, Muhammad Ye, Qiang IglayReger, Heidi Tan, Meng H. Boehnke, Michael Burant, Charles F. Soleimanpour, Scott A. Gagliano Taliun, Sarah A. |
description | Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non‐UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry. |
doi_str_mv | 10.1002/gepi.22521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780065303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816712358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3931-d20e16a8228db87d948ca71ece785d28b7c07aec9d6cdc69028fd0bc606cf2823</originalsourceid><addsrcrecordid>eNp90M9L5TAQB_AgLuvT3Yt_gAS8iFCdTF-b9Cjy_AHCelD2GNJkKtG-piat8v77rVY9eNjTDMyHL8OXsX0BJwIATx-o9yeIBYotthBQqQxR4jZbgFyKDPKq2GG7KT0CCLGsip9sJy8VCqnUgv1dvZh2NIMPHQ8N70O7eaDOWx59euLJhkiJD4E73zQUqRu8GYjXNLwSdXzY9MQFN52bV5ycmY6UfrEfjWkT_f6Ye-z-YnV3fpXd_Lm8Pj-7yWxe5SJzCCRKoxCVq5V01VJZIwVZkqpwqGppQRqylSuts2UFqBoHtS2htA0qzPfY0Zzbx_A8Uhr02idLbWs6CmPSKBVAWeSQT_TwG30MY-ym7zQqUUqBeaEmdTwrG0NKkRrdR782caMF6Le69Vvd-r3uCR98RI71mtwX_ex3AmIGr76lzX-i9OXq9noO_QdQBYnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816712358</pqid></control><display><type>article</type><title>Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Shoaib, Muhammad ; Ye, Qiang ; IglayReger, Heidi ; Tan, Meng H. ; Boehnke, Michael ; Burant, Charles F. ; Soleimanpour, Scott A. ; Gagliano Taliun, Sarah A.</creator><creatorcontrib>Shoaib, Muhammad ; Ye, Qiang ; IglayReger, Heidi ; Tan, Meng H. ; Boehnke, Michael ; Burant, Charles F. ; Soleimanpour, Scott A. ; Gagliano Taliun, Sarah A.</creatorcontrib><description>Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non‐UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.</description><identifier>ISSN: 0741-0395</identifier><identifier>ISSN: 1098-2272</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.22521</identifier><identifier>PMID: 36821788</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 1 - genetics ; Diabetes Mellitus, Type 2 - diagnosis ; Diabetes Mellitus, Type 2 - genetics ; Genetic Predisposition to Disease ; Genome-Wide Association Study ; GWAS ; Humans ; Models, Genetic ; Multifactorial Inheritance - genetics ; polygenic risk scores ; Risk Factors ; Single-nucleotide polymorphism ; Statistical analysis ; type 1 diabetes ; type 2 diabetes ; UK Biobank</subject><ispartof>Genetic epidemiology, 2023-06, Vol.47 (4), p.303-313</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Genetic Epidemiology published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3931-d20e16a8228db87d948ca71ece785d28b7c07aec9d6cdc69028fd0bc606cf2823</citedby><cites>FETCH-LOGICAL-c3931-d20e16a8228db87d948ca71ece785d28b7c07aec9d6cdc69028fd0bc606cf2823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgepi.22521$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgepi.22521$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36821788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Ye, Qiang</creatorcontrib><creatorcontrib>IglayReger, Heidi</creatorcontrib><creatorcontrib>Tan, Meng H.</creatorcontrib><creatorcontrib>Boehnke, Michael</creatorcontrib><creatorcontrib>Burant, Charles F.</creatorcontrib><creatorcontrib>Soleimanpour, Scott A.</creatorcontrib><creatorcontrib>Gagliano Taliun, Sarah A.</creatorcontrib><title>Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes</title><title>Genetic epidemiology</title><addtitle>Genet Epidemiol</addtitle><description>Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non‐UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.</description><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - genetics</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-Wide Association Study</subject><subject>GWAS</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Multifactorial Inheritance - genetics</subject><subject>polygenic risk scores</subject><subject>Risk Factors</subject><subject>Single-nucleotide polymorphism</subject><subject>Statistical analysis</subject><subject>type 1 diabetes</subject><subject>type 2 diabetes</subject><subject>UK Biobank</subject><issn>0741-0395</issn><issn>1098-2272</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp90M9L5TAQB_AgLuvT3Yt_gAS8iFCdTF-b9Cjy_AHCelD2GNJkKtG-piat8v77rVY9eNjTDMyHL8OXsX0BJwIATx-o9yeIBYotthBQqQxR4jZbgFyKDPKq2GG7KT0CCLGsip9sJy8VCqnUgv1dvZh2NIMPHQ8N70O7eaDOWx59euLJhkiJD4E73zQUqRu8GYjXNLwSdXzY9MQFN52bV5ycmY6UfrEfjWkT_f6Ye-z-YnV3fpXd_Lm8Pj-7yWxe5SJzCCRKoxCVq5V01VJZIwVZkqpwqGppQRqylSuts2UFqBoHtS2htA0qzPfY0Zzbx_A8Uhr02idLbWs6CmPSKBVAWeSQT_TwG30MY-ym7zQqUUqBeaEmdTwrG0NKkRrdR782caMF6Le69Vvd-r3uCR98RI71mtwX_ex3AmIGr76lzX-i9OXq9noO_QdQBYnA</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Shoaib, Muhammad</creator><creator>Ye, Qiang</creator><creator>IglayReger, Heidi</creator><creator>Tan, Meng H.</creator><creator>Boehnke, Michael</creator><creator>Burant, Charles F.</creator><creator>Soleimanpour, Scott A.</creator><creator>Gagliano Taliun, Sarah A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>202306</creationdate><title>Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes</title><author>Shoaib, Muhammad ; Ye, Qiang ; IglayReger, Heidi ; Tan, Meng H. ; Boehnke, Michael ; Burant, Charles F. ; Soleimanpour, Scott A. ; Gagliano Taliun, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3931-d20e16a8228db87d948ca71ece785d28b7c07aec9d6cdc69028fd0bc606cf2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - genetics</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-Wide Association Study</topic><topic>GWAS</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Multifactorial Inheritance - genetics</topic><topic>polygenic risk scores</topic><topic>Risk Factors</topic><topic>Single-nucleotide polymorphism</topic><topic>Statistical analysis</topic><topic>type 1 diabetes</topic><topic>type 2 diabetes</topic><topic>UK Biobank</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Ye, Qiang</creatorcontrib><creatorcontrib>IglayReger, Heidi</creatorcontrib><creatorcontrib>Tan, Meng H.</creatorcontrib><creatorcontrib>Boehnke, Michael</creatorcontrib><creatorcontrib>Burant, Charles F.</creatorcontrib><creatorcontrib>Soleimanpour, Scott A.</creatorcontrib><creatorcontrib>Gagliano Taliun, Sarah A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoaib, Muhammad</au><au>Ye, Qiang</au><au>IglayReger, Heidi</au><au>Tan, Meng H.</au><au>Boehnke, Michael</au><au>Burant, Charles F.</au><au>Soleimanpour, Scott A.</au><au>Gagliano Taliun, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet Epidemiol</addtitle><date>2023-06</date><risdate>2023</risdate><volume>47</volume><issue>4</issue><spage>303</spage><epage>313</epage><pages>303-313</pages><issn>0741-0395</issn><issn>1098-2272</issn><eissn>1098-2272</eissn><abstract>Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease‐specific genome‐wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non‐UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36821788</pmid><doi>10.1002/gepi.22521</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-0395 |
ispartof | Genetic epidemiology, 2023-06, Vol.47 (4), p.303-313 |
issn | 0741-0395 1098-2272 1098-2272 |
language | eng |
recordid | cdi_proquest_miscellaneous_2780065303 |
source | MEDLINE; Wiley Journals |
subjects | Diabetes Diabetes mellitus (insulin dependent) Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 1 - genetics Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - genetics Genetic Predisposition to Disease Genome-Wide Association Study GWAS Humans Models, Genetic Multifactorial Inheritance - genetics polygenic risk scores Risk Factors Single-nucleotide polymorphism Statistical analysis type 1 diabetes type 2 diabetes UK Biobank |
title | Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20polygenic%20risk%20scores%20to%20differentiate%20between%20type%201%20and%20type%202%20diabetes&rft.jtitle=Genetic%20epidemiology&rft.au=Shoaib,%20Muhammad&rft.date=2023-06&rft.volume=47&rft.issue=4&rft.spage=303&rft.epage=313&rft.pages=303-313&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.22521&rft_dat=%3Cproquest_cross%3E2816712358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816712358&rft_id=info:pmid/36821788&rfr_iscdi=true |