Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes

Light confinement in nanostructures produces an enhanced light–matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light–matter interaction in the infrared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2023-05, Vol.18 (5), p.529-534
Hauptverfasser: Guo, Xiangdong, Li, Ning, Yang, Xiaoxia, Qi, Ruishi, Wu, Chenchen, Shi, Ruochen, Li, Yuehui, Huang, Yang, García de Abajo, F. Javier, Wang, En-Ge, Gao, Peng, Dai, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 5
container_start_page 529
container_title Nature nanotechnology
container_volume 18
creator Guo, Xiangdong
Li, Ning
Yang, Xiaoxia
Qi, Ruishi
Wu, Chenchen
Shi, Ruochen
Li, Yuehui
Huang, Yang
García de Abajo, F. Javier
Wang, En-Ge
Gao, Peng
Dai, Qing
description Light confinement in nanostructures produces an enhanced light–matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light–matter interaction in the infrared regime. This interaction could be further boosted if polaritonic modes were moulded to form whispering-gallery modes; but scattering losses within nanocavities have so far prevented their observation. Here, we show that hexagonal BN nanotubes act as an atomically smooth nanocavity that can sustain phonon-polariton whispering-gallery modes, owing to their intrinsic hyperbolic dispersion and low scattering losses. Hyperbolic whispering-gallery phonon polaritons on BN nanotubes of ~4 nm radius (sidewall of six atomic layers) are characterized by an ultrasmall nanocavity mode volume ( V m  ≈ 10 –10 λ 0 3 at an optical wavelength λ 0  ≈ 6.4 μm) and a Purcell factor ( Q / V m ) as high as 10 12 . We posit that BN nanotubes could become an important material platform for the realization of one-dimensional, ultrastrong light–matter interactions, with exciting implications for compact photonic devices. A Purcell factor as high as 10 12 is measured in atomically smooth nanocavities of hexagonal boron nitride nanotubes.
doi_str_mv 10.1038/s41565-023-01324-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2780064018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780064018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-7688cd9186fca25ed388c899093af61df7051cb01882366879fa92486da042673</originalsourceid><addsrcrecordid>eNp9kE9PwyAYh4nRuDn9Ah5MEy9eUP4UCkezqNMs8aJnQlu6sXRQoY3Zt5e5ORMPnuAlz_vjlweAS4xuMaLiLuaYcQYRoRBhSnJIj8AYF7mAlEp2fLiLYgTOYlwhxIgk-SkYUS4IpVyOwcts05lQ-tZW2efSxjRYt4AL3bYmbLJu6Z13WedbHWzvXcysy0of0puzfbC1yZx2vh9KE8_BSaPbaC725wS8Pz68TWdw_vr0PL2fw4oWrIcFF6KqJRa8qTRhpqZpFlIiSXXDcd0UiOGqRFikjpyLQjY6tRa81ignvKATcLPL7YL_GEzs1drGyrStdsYPUZFCIMTzFJDQ6z_oyg_BpXaKCMwET7ksUWRHVcHHGEyjumDXOmwURmprWu1Mq2RafZtWNC1d7aOHcm3qw8qP2gTQHRC7rVITfv_-J_YLB1CINQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815862485</pqid></control><display><type>article</type><title>Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Xiangdong ; Li, Ning ; Yang, Xiaoxia ; Qi, Ruishi ; Wu, Chenchen ; Shi, Ruochen ; Li, Yuehui ; Huang, Yang ; García de Abajo, F. Javier ; Wang, En-Ge ; Gao, Peng ; Dai, Qing</creator><creatorcontrib>Guo, Xiangdong ; Li, Ning ; Yang, Xiaoxia ; Qi, Ruishi ; Wu, Chenchen ; Shi, Ruochen ; Li, Yuehui ; Huang, Yang ; García de Abajo, F. Javier ; Wang, En-Ge ; Gao, Peng ; Dai, Qing</creatorcontrib><description>Light confinement in nanostructures produces an enhanced light–matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light–matter interaction in the infrared regime. This interaction could be further boosted if polaritonic modes were moulded to form whispering-gallery modes; but scattering losses within nanocavities have so far prevented their observation. Here, we show that hexagonal BN nanotubes act as an atomically smooth nanocavity that can sustain phonon-polariton whispering-gallery modes, owing to their intrinsic hyperbolic dispersion and low scattering losses. Hyperbolic whispering-gallery phonon polaritons on BN nanotubes of ~4 nm radius (sidewall of six atomic layers) are characterized by an ultrasmall nanocavity mode volume ( V m  ≈ 10 –10 λ 0 3 at an optical wavelength λ 0  ≈ 6.4 μm) and a Purcell factor ( Q / V m ) as high as 10 12 . We posit that BN nanotubes could become an important material platform for the realization of one-dimensional, ultrastrong light–matter interactions, with exciting implications for compact photonic devices. A Purcell factor as high as 10 12 is measured in atomically smooth nanocavities of hexagonal boron nitride nanotubes.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01324-3</identifier><identifier>PMID: 36823369</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/930/12 ; 639/624/399/1098 ; 639/624/400/2797 ; 639/925/357/1018 ; Atomic radius ; Boron ; Boron nitride ; Chemistry and Materials Science ; Interdisciplinary aspects ; Laboratories ; Light ; Materials Science ; Microscopy ; Nanosensors ; Nanotechnology ; Nanotechnology and Microengineering ; Nanotubes ; Phonons ; Physics ; Polaritons ; Scattering ; Spectrum analysis</subject><ispartof>Nature nanotechnology, 2023-05, Vol.18 (5), p.529-534</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-7688cd9186fca25ed388c899093af61df7051cb01882366879fa92486da042673</citedby><cites>FETCH-LOGICAL-c375t-7688cd9186fca25ed388c899093af61df7051cb01882366879fa92486da042673</cites><orcidid>0000-0001-9868-2115 ; 0000-0002-1750-0867 ; 0000-0002-0670-053X ; 0000-0001-5624-5320 ; 0000-0002-4970-4565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-023-01324-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-023-01324-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36823369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Xiangdong</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Yang, Xiaoxia</creatorcontrib><creatorcontrib>Qi, Ruishi</creatorcontrib><creatorcontrib>Wu, Chenchen</creatorcontrib><creatorcontrib>Shi, Ruochen</creatorcontrib><creatorcontrib>Li, Yuehui</creatorcontrib><creatorcontrib>Huang, Yang</creatorcontrib><creatorcontrib>García de Abajo, F. Javier</creatorcontrib><creatorcontrib>Wang, En-Ge</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Dai, Qing</creatorcontrib><title>Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Light confinement in nanostructures produces an enhanced light–matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light–matter interaction in the infrared regime. This interaction could be further boosted if polaritonic modes were moulded to form whispering-gallery modes; but scattering losses within nanocavities have so far prevented their observation. Here, we show that hexagonal BN nanotubes act as an atomically smooth nanocavity that can sustain phonon-polariton whispering-gallery modes, owing to their intrinsic hyperbolic dispersion and low scattering losses. Hyperbolic whispering-gallery phonon polaritons on BN nanotubes of ~4 nm radius (sidewall of six atomic layers) are characterized by an ultrasmall nanocavity mode volume ( V m  ≈ 10 –10 λ 0 3 at an optical wavelength λ 0  ≈ 6.4 μm) and a Purcell factor ( Q / V m ) as high as 10 12 . We posit that BN nanotubes could become an important material platform for the realization of one-dimensional, ultrastrong light–matter interactions, with exciting implications for compact photonic devices. A Purcell factor as high as 10 12 is measured in atomically smooth nanocavities of hexagonal boron nitride nanotubes.</description><subject>639/301/930/12</subject><subject>639/624/399/1098</subject><subject>639/624/400/2797</subject><subject>639/925/357/1018</subject><subject>Atomic radius</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Chemistry and Materials Science</subject><subject>Interdisciplinary aspects</subject><subject>Laboratories</subject><subject>Light</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanosensors</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanotubes</subject><subject>Phonons</subject><subject>Physics</subject><subject>Polaritons</subject><subject>Scattering</subject><subject>Spectrum analysis</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9PwyAYh4nRuDn9Ah5MEy9eUP4UCkezqNMs8aJnQlu6sXRQoY3Zt5e5ORMPnuAlz_vjlweAS4xuMaLiLuaYcQYRoRBhSnJIj8AYF7mAlEp2fLiLYgTOYlwhxIgk-SkYUS4IpVyOwcts05lQ-tZW2efSxjRYt4AL3bYmbLJu6Z13WedbHWzvXcysy0of0puzfbC1yZx2vh9KE8_BSaPbaC725wS8Pz68TWdw_vr0PL2fw4oWrIcFF6KqJRa8qTRhpqZpFlIiSXXDcd0UiOGqRFikjpyLQjY6tRa81ignvKATcLPL7YL_GEzs1drGyrStdsYPUZFCIMTzFJDQ6z_oyg_BpXaKCMwET7ksUWRHVcHHGEyjumDXOmwURmprWu1Mq2RafZtWNC1d7aOHcm3qw8qP2gTQHRC7rVITfv_-J_YLB1CINQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Guo, Xiangdong</creator><creator>Li, Ning</creator><creator>Yang, Xiaoxia</creator><creator>Qi, Ruishi</creator><creator>Wu, Chenchen</creator><creator>Shi, Ruochen</creator><creator>Li, Yuehui</creator><creator>Huang, Yang</creator><creator>García de Abajo, F. Javier</creator><creator>Wang, En-Ge</creator><creator>Gao, Peng</creator><creator>Dai, Qing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9868-2115</orcidid><orcidid>https://orcid.org/0000-0002-1750-0867</orcidid><orcidid>https://orcid.org/0000-0002-0670-053X</orcidid><orcidid>https://orcid.org/0000-0001-5624-5320</orcidid><orcidid>https://orcid.org/0000-0002-4970-4565</orcidid></search><sort><creationdate>20230501</creationdate><title>Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes</title><author>Guo, Xiangdong ; Li, Ning ; Yang, Xiaoxia ; Qi, Ruishi ; Wu, Chenchen ; Shi, Ruochen ; Li, Yuehui ; Huang, Yang ; García de Abajo, F. Javier ; Wang, En-Ge ; Gao, Peng ; Dai, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-7688cd9186fca25ed388c899093af61df7051cb01882366879fa92486da042673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/930/12</topic><topic>639/624/399/1098</topic><topic>639/624/400/2797</topic><topic>639/925/357/1018</topic><topic>Atomic radius</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Chemistry and Materials Science</topic><topic>Interdisciplinary aspects</topic><topic>Laboratories</topic><topic>Light</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanosensors</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanotubes</topic><topic>Phonons</topic><topic>Physics</topic><topic>Polaritons</topic><topic>Scattering</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiangdong</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Yang, Xiaoxia</creatorcontrib><creatorcontrib>Qi, Ruishi</creatorcontrib><creatorcontrib>Wu, Chenchen</creatorcontrib><creatorcontrib>Shi, Ruochen</creatorcontrib><creatorcontrib>Li, Yuehui</creatorcontrib><creatorcontrib>Huang, Yang</creatorcontrib><creatorcontrib>García de Abajo, F. Javier</creatorcontrib><creatorcontrib>Wang, En-Ge</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Dai, Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiangdong</au><au>Li, Ning</au><au>Yang, Xiaoxia</au><au>Qi, Ruishi</au><au>Wu, Chenchen</au><au>Shi, Ruochen</au><au>Li, Yuehui</au><au>Huang, Yang</au><au>García de Abajo, F. Javier</au><au>Wang, En-Ge</au><au>Gao, Peng</au><au>Dai, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>18</volume><issue>5</issue><spage>529</spage><epage>534</epage><pages>529-534</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Light confinement in nanostructures produces an enhanced light–matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light–matter interaction in the infrared regime. This interaction could be further boosted if polaritonic modes were moulded to form whispering-gallery modes; but scattering losses within nanocavities have so far prevented their observation. Here, we show that hexagonal BN nanotubes act as an atomically smooth nanocavity that can sustain phonon-polariton whispering-gallery modes, owing to their intrinsic hyperbolic dispersion and low scattering losses. Hyperbolic whispering-gallery phonon polaritons on BN nanotubes of ~4 nm radius (sidewall of six atomic layers) are characterized by an ultrasmall nanocavity mode volume ( V m  ≈ 10 –10 λ 0 3 at an optical wavelength λ 0  ≈ 6.4 μm) and a Purcell factor ( Q / V m ) as high as 10 12 . We posit that BN nanotubes could become an important material platform for the realization of one-dimensional, ultrastrong light–matter interactions, with exciting implications for compact photonic devices. A Purcell factor as high as 10 12 is measured in atomically smooth nanocavities of hexagonal boron nitride nanotubes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36823369</pmid><doi>10.1038/s41565-023-01324-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9868-2115</orcidid><orcidid>https://orcid.org/0000-0002-1750-0867</orcidid><orcidid>https://orcid.org/0000-0002-0670-053X</orcidid><orcidid>https://orcid.org/0000-0001-5624-5320</orcidid><orcidid>https://orcid.org/0000-0002-4970-4565</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2023-05, Vol.18 (5), p.529-534
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2780064018
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/301/930/12
639/624/399/1098
639/624/400/2797
639/925/357/1018
Atomic radius
Boron
Boron nitride
Chemistry and Materials Science
Interdisciplinary aspects
Laboratories
Light
Materials Science
Microscopy
Nanosensors
Nanotechnology
Nanotechnology and Microengineering
Nanotubes
Phonons
Physics
Polaritons
Scattering
Spectrum analysis
title Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20whispering-gallery%20phonon%20polaritons%20in%20boron%20nitride%20nanotubes&rft.jtitle=Nature%20nanotechnology&rft.au=Guo,%20Xiangdong&rft.date=2023-05-01&rft.volume=18&rft.issue=5&rft.spage=529&rft.epage=534&rft.pages=529-534&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01324-3&rft_dat=%3Cproquest_cross%3E2780064018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815862485&rft_id=info:pmid/36823369&rfr_iscdi=true