Experiments on the motion of gas bubbles in turbulence generated by an active grid
The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number Rλ of up t...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2002-06, Vol.461, p.127-154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | |
container_start_page | 127 |
container_title | Journal of fluid mechanics |
container_volume | 461 |
creator | POORTE, R. E. G. BIESHEUVEL, A. |
description | The random motion of nearly spherical bubbles in the turbulent flow behind a grid
is studied experimentally. In quiescent water these bubbles rise at high Reynolds
number. The turbulence is generated by an active grid of the design of Makita (1991),
and can have turbulence Reynolds number Rλ of up to 200. Minor changes in the
geometry of the grid and in its mode of operation improves the isotropy of the
turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft
(1996). The trajectory of each bubble is measured with high spatial and temporal
resolution with a specially developed technique that makes use of a position-sensitive
detector. Bubble statistics such as the mean rise velocity and the root-mean-square
velocity fluctuations are obtained by ensemble averaging over many identical bubbles.
The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared
with the quiescent conditions. The vertical bubble velocity fluctuations are found to
be non-Gaussian, whereas the horizontal displacements are Gaussian for all times.
The diffusivity of bubbles is considerably less than that of fluid particles. These
findings are qualitatively consistent with results obtained through theoretical analysis
and numerical simulations by Spelt & Biesheuvel (1997). |
doi_str_mv | 10.1017/S0022112002008273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27799419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112002008273</cupid><sourcerecordid>27799419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-220d076c94af850ab40971e1b3158bf4b2387284c81e2ebebc8354792f6104c63</originalsourceid><addsrcrecordid>eNp1kF9r2zAUxcVYYVnbD9A3wVjf3OlKsiU_jpBmhYzRf7RvQlKuM6eOnUr2aL_9ZBK20tKne7nndw-HQ8gJsDNgoL5dM8Y5AE-DMc2V-EAmIIsyU4XMP5LJKGej_ol8jnHNGAhWqgm5mj1tMdQbbPtIu5b2v5Fuur5Oa1fRlY3UDc41GGmdxCG4ocHWI11hi8H2uKTumdqWWt_Xf9I51MsjclDZJuLxfh6S2_PZzfRHtvg1v5h-X2ReFrzPOGdLpgpfSlvpnFknUyBAcAJy7SrpuNCKa-k1IEeHzmuRS1XyqgAmfSEOyenOdxu6xwFjbzZ19Ng0tsVuiIYrVZYSygR-eQWuuyG0KZsBCVoKBaASBTvKhy7GgJXZpl5seDbAzNixedNx-vm6d7bR26YKtvV1_P8olACmIHHZjqtjj0__dBseTKGEyk0xvzRX0zv985rfm9FX7LPYjUuVrvBF5HfT_AW5ZpeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418437117</pqid></control><display><type>article</type><title>Experiments on the motion of gas bubbles in turbulence generated by an active grid</title><source>Cambridge University Press Journals Complete</source><creator>POORTE, R. E. G. ; BIESHEUVEL, A.</creator><creatorcontrib>POORTE, R. E. G. ; BIESHEUVEL, A.</creatorcontrib><description>The random motion of nearly spherical bubbles in the turbulent flow behind a grid
is studied experimentally. In quiescent water these bubbles rise at high Reynolds
number. The turbulence is generated by an active grid of the design of Makita (1991),
and can have turbulence Reynolds number Rλ of up to 200. Minor changes in the
geometry of the grid and in its mode of operation improves the isotropy of the
turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft
(1996). The trajectory of each bubble is measured with high spatial and temporal
resolution with a specially developed technique that makes use of a position-sensitive
detector. Bubble statistics such as the mean rise velocity and the root-mean-square
velocity fluctuations are obtained by ensemble averaging over many identical bubbles.
The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared
with the quiescent conditions. The vertical bubble velocity fluctuations are found to
be non-Gaussian, whereas the horizontal displacements are Gaussian for all times.
The diffusivity of bubbles is considerably less than that of fluid particles. These
findings are qualitatively consistent with results obtained through theoretical analysis
and numerical simulations by Spelt & Biesheuvel (1997).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112002008273</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Bubbles ; Exact sciences and technology ; Fluctuations ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Gases ; Geometry ; Isotropic turbulence; homogeneous turbulence ; Isotropy ; Lagrange multiplier ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Physics ; Reynolds number ; Theoretical analysis ; Turbulence ; Turbulent flow ; Turbulent flows, convection, and heat transfer ; Velocity</subject><ispartof>Journal of fluid mechanics, 2002-06, Vol.461, p.127-154</ispartof><rights>2002 Cambridge University Press</rights><rights>2002 INIST-CNRS</rights><rights>Copyright Cambridge University Press Jun 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-220d076c94af850ab40971e1b3158bf4b2387284c81e2ebebc8354792f6104c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112002008273/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13731071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>POORTE, R. E. G.</creatorcontrib><creatorcontrib>BIESHEUVEL, A.</creatorcontrib><title>Experiments on the motion of gas bubbles in turbulence generated by an active grid</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The random motion of nearly spherical bubbles in the turbulent flow behind a grid
is studied experimentally. In quiescent water these bubbles rise at high Reynolds
number. The turbulence is generated by an active grid of the design of Makita (1991),
and can have turbulence Reynolds number Rλ of up to 200. Minor changes in the
geometry of the grid and in its mode of operation improves the isotropy of the
turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft
(1996). The trajectory of each bubble is measured with high spatial and temporal
resolution with a specially developed technique that makes use of a position-sensitive
detector. Bubble statistics such as the mean rise velocity and the root-mean-square
velocity fluctuations are obtained by ensemble averaging over many identical bubbles.
The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared
with the quiescent conditions. The vertical bubble velocity fluctuations are found to
be non-Gaussian, whereas the horizontal displacements are Gaussian for all times.
The diffusivity of bubbles is considerably less than that of fluid particles. These
findings are qualitatively consistent with results obtained through theoretical analysis
and numerical simulations by Spelt & Biesheuvel (1997).</description><subject>Bubbles</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gases</subject><subject>Geometry</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Isotropy</subject><subject>Lagrange multiplier</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Theoretical analysis</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF9r2zAUxcVYYVnbD9A3wVjf3OlKsiU_jpBmhYzRf7RvQlKuM6eOnUr2aL_9ZBK20tKne7nndw-HQ8gJsDNgoL5dM8Y5AE-DMc2V-EAmIIsyU4XMP5LJKGej_ol8jnHNGAhWqgm5mj1tMdQbbPtIu5b2v5Fuur5Oa1fRlY3UDc41GGmdxCG4ocHWI11hi8H2uKTumdqWWt_Xf9I51MsjclDZJuLxfh6S2_PZzfRHtvg1v5h-X2ReFrzPOGdLpgpfSlvpnFknUyBAcAJy7SrpuNCKa-k1IEeHzmuRS1XyqgAmfSEOyenOdxu6xwFjbzZ19Ng0tsVuiIYrVZYSygR-eQWuuyG0KZsBCVoKBaASBTvKhy7GgJXZpl5seDbAzNixedNx-vm6d7bR26YKtvV1_P8olACmIHHZjqtjj0__dBseTKGEyk0xvzRX0zv985rfm9FX7LPYjUuVrvBF5HfT_AW5ZpeU</recordid><startdate>20020625</startdate><enddate>20020625</enddate><creator>POORTE, R. E. G.</creator><creator>BIESHEUVEL, A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20020625</creationdate><title>Experiments on the motion of gas bubbles in turbulence generated by an active grid</title><author>POORTE, R. E. G. ; BIESHEUVEL, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-220d076c94af850ab40971e1b3158bf4b2387284c81e2ebebc8354792f6104c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bubbles</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gases</topic><topic>Geometry</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Isotropy</topic><topic>Lagrange multiplier</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Theoretical analysis</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>POORTE, R. E. G.</creatorcontrib><creatorcontrib>BIESHEUVEL, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>POORTE, R. E. G.</au><au>BIESHEUVEL, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experiments on the motion of gas bubbles in turbulence generated by an active grid</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2002-06-25</date><risdate>2002</risdate><volume>461</volume><spage>127</spage><epage>154</epage><pages>127-154</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The random motion of nearly spherical bubbles in the turbulent flow behind a grid
is studied experimentally. In quiescent water these bubbles rise at high Reynolds
number. The turbulence is generated by an active grid of the design of Makita (1991),
and can have turbulence Reynolds number Rλ of up to 200. Minor changes in the
geometry of the grid and in its mode of operation improves the isotropy of the
turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft
(1996). The trajectory of each bubble is measured with high spatial and temporal
resolution with a specially developed technique that makes use of a position-sensitive
detector. Bubble statistics such as the mean rise velocity and the root-mean-square
velocity fluctuations are obtained by ensemble averaging over many identical bubbles.
The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared
with the quiescent conditions. The vertical bubble velocity fluctuations are found to
be non-Gaussian, whereas the horizontal displacements are Gaussian for all times.
The diffusivity of bubbles is considerably less than that of fluid particles. These
findings are qualitatively consistent with results obtained through theoretical analysis
and numerical simulations by Spelt & Biesheuvel (1997).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112002008273</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2002-06, Vol.461, p.127-154 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_27799419 |
source | Cambridge University Press Journals Complete |
subjects | Bubbles Exact sciences and technology Fluctuations Fluid dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) Gases Geometry Isotropic turbulence homogeneous turbulence Isotropy Lagrange multiplier Multiphase and particle-laden flows Nonhomogeneous flows Physics Reynolds number Theoretical analysis Turbulence Turbulent flow Turbulent flows, convection, and heat transfer Velocity |
title | Experiments on the motion of gas bubbles in turbulence generated by an active grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experiments%20on%20the%20motion%20of%20gas%20bubbles%20in%20turbulence%20generated%20by%20an%20active%20grid&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=POORTE,%20R.%20E.%20G.&rft.date=2002-06-25&rft.volume=461&rft.spage=127&rft.epage=154&rft.pages=127-154&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112002008273&rft_dat=%3Cproquest_cross%3E27799419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418437117&rft_id=info:pmid/&rft_cupid=10_1017_S0022112002008273&rfr_iscdi=true |