Experiments on the motion of gas bubbles in turbulence generated by an active grid

The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number Rλ of up t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2002-06, Vol.461, p.127-154
Hauptverfasser: POORTE, R. E. G., BIESHEUVEL, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue
container_start_page 127
container_title Journal of fluid mechanics
container_volume 461
creator POORTE, R. E. G.
BIESHEUVEL, A.
description The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number Rλ of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt & Biesheuvel (1997).
doi_str_mv 10.1017/S0022112002008273
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27799419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112002008273</cupid><sourcerecordid>27799419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-220d076c94af850ab40971e1b3158bf4b2387284c81e2ebebc8354792f6104c63</originalsourceid><addsrcrecordid>eNp1kF9r2zAUxcVYYVnbD9A3wVjf3OlKsiU_jpBmhYzRf7RvQlKuM6eOnUr2aL_9ZBK20tKne7nndw-HQ8gJsDNgoL5dM8Y5AE-DMc2V-EAmIIsyU4XMP5LJKGej_ol8jnHNGAhWqgm5mj1tMdQbbPtIu5b2v5Fuur5Oa1fRlY3UDc41GGmdxCG4ocHWI11hi8H2uKTumdqWWt_Xf9I51MsjclDZJuLxfh6S2_PZzfRHtvg1v5h-X2ReFrzPOGdLpgpfSlvpnFknUyBAcAJy7SrpuNCKa-k1IEeHzmuRS1XyqgAmfSEOyenOdxu6xwFjbzZ19Ng0tsVuiIYrVZYSygR-eQWuuyG0KZsBCVoKBaASBTvKhy7GgJXZpl5seDbAzNixedNx-vm6d7bR26YKtvV1_P8olACmIHHZjqtjj0__dBseTKGEyk0xvzRX0zv985rfm9FX7LPYjUuVrvBF5HfT_AW5ZpeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418437117</pqid></control><display><type>article</type><title>Experiments on the motion of gas bubbles in turbulence generated by an active grid</title><source>Cambridge University Press Journals Complete</source><creator>POORTE, R. E. G. ; BIESHEUVEL, A.</creator><creatorcontrib>POORTE, R. E. G. ; BIESHEUVEL, A.</creatorcontrib><description>The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number Rλ of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski &amp; Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt &amp; Biesheuvel (1997).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112002008273</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Bubbles ; Exact sciences and technology ; Fluctuations ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Gases ; Geometry ; Isotropic turbulence; homogeneous turbulence ; Isotropy ; Lagrange multiplier ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Physics ; Reynolds number ; Theoretical analysis ; Turbulence ; Turbulent flow ; Turbulent flows, convection, and heat transfer ; Velocity</subject><ispartof>Journal of fluid mechanics, 2002-06, Vol.461, p.127-154</ispartof><rights>2002 Cambridge University Press</rights><rights>2002 INIST-CNRS</rights><rights>Copyright Cambridge University Press Jun 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-220d076c94af850ab40971e1b3158bf4b2387284c81e2ebebc8354792f6104c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112002008273/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13731071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>POORTE, R. E. G.</creatorcontrib><creatorcontrib>BIESHEUVEL, A.</creatorcontrib><title>Experiments on the motion of gas bubbles in turbulence generated by an active grid</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number Rλ of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski &amp; Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt &amp; Biesheuvel (1997).</description><subject>Bubbles</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gases</subject><subject>Geometry</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Isotropy</subject><subject>Lagrange multiplier</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Theoretical analysis</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF9r2zAUxcVYYVnbD9A3wVjf3OlKsiU_jpBmhYzRf7RvQlKuM6eOnUr2aL_9ZBK20tKne7nndw-HQ8gJsDNgoL5dM8Y5AE-DMc2V-EAmIIsyU4XMP5LJKGej_ol8jnHNGAhWqgm5mj1tMdQbbPtIu5b2v5Fuur5Oa1fRlY3UDc41GGmdxCG4ocHWI11hi8H2uKTumdqWWt_Xf9I51MsjclDZJuLxfh6S2_PZzfRHtvg1v5h-X2ReFrzPOGdLpgpfSlvpnFknUyBAcAJy7SrpuNCKa-k1IEeHzmuRS1XyqgAmfSEOyenOdxu6xwFjbzZ19Ng0tsVuiIYrVZYSygR-eQWuuyG0KZsBCVoKBaASBTvKhy7GgJXZpl5seDbAzNixedNx-vm6d7bR26YKtvV1_P8olACmIHHZjqtjj0__dBseTKGEyk0xvzRX0zv985rfm9FX7LPYjUuVrvBF5HfT_AW5ZpeU</recordid><startdate>20020625</startdate><enddate>20020625</enddate><creator>POORTE, R. E. G.</creator><creator>BIESHEUVEL, A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20020625</creationdate><title>Experiments on the motion of gas bubbles in turbulence generated by an active grid</title><author>POORTE, R. E. G. ; BIESHEUVEL, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-220d076c94af850ab40971e1b3158bf4b2387284c81e2ebebc8354792f6104c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bubbles</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gases</topic><topic>Geometry</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Isotropy</topic><topic>Lagrange multiplier</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Theoretical analysis</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>POORTE, R. E. G.</creatorcontrib><creatorcontrib>BIESHEUVEL, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>POORTE, R. E. G.</au><au>BIESHEUVEL, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experiments on the motion of gas bubbles in turbulence generated by an active grid</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2002-06-25</date><risdate>2002</risdate><volume>461</volume><spage>127</spage><epage>154</epage><pages>127-154</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number Rλ of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski &amp; Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt &amp; Biesheuvel (1997).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112002008273</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2002-06, Vol.461, p.127-154
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_27799419
source Cambridge University Press Journals Complete
subjects Bubbles
Exact sciences and technology
Fluctuations
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Gases
Geometry
Isotropic turbulence
homogeneous turbulence
Isotropy
Lagrange multiplier
Multiphase and particle-laden flows
Nonhomogeneous flows
Physics
Reynolds number
Theoretical analysis
Turbulence
Turbulent flow
Turbulent flows, convection, and heat transfer
Velocity
title Experiments on the motion of gas bubbles in turbulence generated by an active grid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experiments%20on%20the%20motion%20of%20gas%20bubbles%20in%20turbulence%20generated%20by%20an%20active%20grid&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=POORTE,%20R.%20E.%20G.&rft.date=2002-06-25&rft.volume=461&rft.spage=127&rft.epage=154&rft.pages=127-154&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112002008273&rft_dat=%3Cproquest_cross%3E27799419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418437117&rft_id=info:pmid/&rft_cupid=10_1017_S0022112002008273&rfr_iscdi=true