Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier

Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of labelled compounds & radiopharmaceuticals 2023-07, Vol.66 (9), p.205-221
Hauptverfasser: Lindberg, Anton, Chassé, Melissa, Varlow, Cassis, Pees, Anna, Vasdev, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 9
container_start_page 205
container_title Journal of labelled compounds & radiopharmaceuticals
container_volume 66
creator Lindberg, Anton
Chassé, Melissa
Varlow, Cassis
Pees, Anna
Vasdev, Neil
description Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non‐specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon‐11 (11C) or fluorine‐18 (18F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program. Designing PET radiotracers with the ability to cross the blood–brain barrier remains a major challenge. This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can aid in the development of novel CNS PET radiotracers.
doi_str_mv 10.1002/jlcr.4019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779350856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840142682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-849eaf5182ba6af5c87b43255ec3c7337cdbdbc9680643054ee1d91fdfff9ae13</originalsourceid><addsrcrecordid>eNp1kc1O4zAURi0EGjrMLHgBZIkNLAJ27CT2ElWdH1QJBMzacpyb4iqNy3XKqDvegTecJxmXAgskVv6ke3Tkez9CDjk744zl5_PO4ZlkXO-QEWdaZ1xIuUtGTJR5JhUT--RrjHPG0kzKL2RflIoXFZMj8nA7oB1g5iHSNiBtIPpZ7_sZ7cMjdHQZoh8w9BQWPkafwhAWYYZ2eb-mJ9eTu1OKtvEhWRxgTFPqMMQU7oHWXQjNv6fnGq3vaW0RPeA3stfaLsL31_eA_PkxuRv_yqZXP3-PL6aZE4XQmZIabFtwlde2TMGpqpYiLwpwwlVCVK6pm9rpUrFSClZIAN5o3jZt22oLXByQk613ieFhBXEwaQMHXWd7CKto8qrSomCqKBN6_AGdhxX26XcmV-muMi9VnqjTLfWyIEJrlugXFteGM7PpwWx6MJseEnv0alzVC2jeybfDJ-B8C_z1Haw_N5nL6fjmRfkf_aGU1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840142682</pqid></control><display><type>article</type><title>Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lindberg, Anton ; Chassé, Melissa ; Varlow, Cassis ; Pees, Anna ; Vasdev, Neil</creator><creatorcontrib>Lindberg, Anton ; Chassé, Melissa ; Varlow, Cassis ; Pees, Anna ; Vasdev, Neil</creatorcontrib><description>Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non‐specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon‐11 (11C) or fluorine‐18 (18F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program. Designing PET radiotracers with the ability to cross the blood–brain barrier remains a major challenge. This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can aid in the development of novel CNS PET radiotracers.</description><identifier>ISSN: 0362-4803</identifier><identifier>EISSN: 1099-1344</identifier><identifier>DOI: 10.1002/jlcr.4019</identifier><identifier>PMID: 36815704</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biological activity ; Biological Transport ; Blood-brain barrier ; Blood-Brain Barrier - diagnostic imaging ; Blood-Brain Barrier - metabolism ; Brain - diagnostic imaging ; Brain - metabolism ; carbon‐11 ; Central nervous system ; Drug development ; Fluorine ; Fluorine Radioisotopes - metabolism ; fluorine‐18 ; F‐18 ; In vivo methods and tests ; Medical imaging ; Neuroimaging ; PET ; Pharmacokinetics ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Radioactive tracers ; Radiopharmaceuticals - metabolism ; Tomography</subject><ispartof>Journal of labelled compounds &amp; radiopharmaceuticals, 2023-07, Vol.66 (9), p.205-221</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-849eaf5182ba6af5c87b43255ec3c7337cdbdbc9680643054ee1d91fdfff9ae13</citedby><cites>FETCH-LOGICAL-c3539-849eaf5182ba6af5c87b43255ec3c7337cdbdbc9680643054ee1d91fdfff9ae13</cites><orcidid>0000-0002-2087-5125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjlcr.4019$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjlcr.4019$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36815704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindberg, Anton</creatorcontrib><creatorcontrib>Chassé, Melissa</creatorcontrib><creatorcontrib>Varlow, Cassis</creatorcontrib><creatorcontrib>Pees, Anna</creatorcontrib><creatorcontrib>Vasdev, Neil</creatorcontrib><title>Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier</title><title>Journal of labelled compounds &amp; radiopharmaceuticals</title><addtitle>J Labelled Comp Radiopharm</addtitle><description>Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non‐specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon‐11 (11C) or fluorine‐18 (18F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program. Designing PET radiotracers with the ability to cross the blood–brain barrier remains a major challenge. This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can aid in the development of novel CNS PET radiotracers.</description><subject>Biological activity</subject><subject>Biological Transport</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - diagnostic imaging</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>carbon‐11</subject><subject>Central nervous system</subject><subject>Drug development</subject><subject>Fluorine</subject><subject>Fluorine Radioisotopes - metabolism</subject><subject>fluorine‐18</subject><subject>F‐18</subject><subject>In vivo methods and tests</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>PET</subject><subject>Pharmacokinetics</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radioactive tracers</subject><subject>Radiopharmaceuticals - metabolism</subject><subject>Tomography</subject><issn>0362-4803</issn><issn>1099-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1O4zAURi0EGjrMLHgBZIkNLAJ27CT2ElWdH1QJBMzacpyb4iqNy3XKqDvegTecJxmXAgskVv6ke3Tkez9CDjk744zl5_PO4ZlkXO-QEWdaZ1xIuUtGTJR5JhUT--RrjHPG0kzKL2RflIoXFZMj8nA7oB1g5iHSNiBtIPpZ7_sZ7cMjdHQZoh8w9BQWPkafwhAWYYZ2eb-mJ9eTu1OKtvEhWRxgTFPqMMQU7oHWXQjNv6fnGq3vaW0RPeA3stfaLsL31_eA_PkxuRv_yqZXP3-PL6aZE4XQmZIabFtwlde2TMGpqpYiLwpwwlVCVK6pm9rpUrFSClZIAN5o3jZt22oLXByQk613ieFhBXEwaQMHXWd7CKto8qrSomCqKBN6_AGdhxX26XcmV-muMi9VnqjTLfWyIEJrlugXFteGM7PpwWx6MJseEnv0alzVC2jeybfDJ-B8C_z1Haw_N5nL6fjmRfkf_aGU1w</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Lindberg, Anton</creator><creator>Chassé, Melissa</creator><creator>Varlow, Cassis</creator><creator>Pees, Anna</creator><creator>Vasdev, Neil</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2087-5125</orcidid></search><sort><creationdate>202307</creationdate><title>Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier</title><author>Lindberg, Anton ; Chassé, Melissa ; Varlow, Cassis ; Pees, Anna ; Vasdev, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-849eaf5182ba6af5c87b43255ec3c7337cdbdbc9680643054ee1d91fdfff9ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological activity</topic><topic>Biological Transport</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - diagnostic imaging</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>carbon‐11</topic><topic>Central nervous system</topic><topic>Drug development</topic><topic>Fluorine</topic><topic>Fluorine Radioisotopes - metabolism</topic><topic>fluorine‐18</topic><topic>F‐18</topic><topic>In vivo methods and tests</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>PET</topic><topic>Pharmacokinetics</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radioactive tracers</topic><topic>Radiopharmaceuticals - metabolism</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindberg, Anton</creatorcontrib><creatorcontrib>Chassé, Melissa</creatorcontrib><creatorcontrib>Varlow, Cassis</creatorcontrib><creatorcontrib>Pees, Anna</creatorcontrib><creatorcontrib>Vasdev, Neil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of labelled compounds &amp; radiopharmaceuticals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindberg, Anton</au><au>Chassé, Melissa</au><au>Varlow, Cassis</au><au>Pees, Anna</au><au>Vasdev, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier</atitle><jtitle>Journal of labelled compounds &amp; radiopharmaceuticals</jtitle><addtitle>J Labelled Comp Radiopharm</addtitle><date>2023-07</date><risdate>2023</risdate><volume>66</volume><issue>9</issue><spage>205</spage><epage>221</epage><pages>205-221</pages><issn>0362-4803</issn><eissn>1099-1344</eissn><abstract>Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non‐specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon‐11 (11C) or fluorine‐18 (18F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program. Designing PET radiotracers with the ability to cross the blood–brain barrier remains a major challenge. This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can aid in the development of novel CNS PET radiotracers.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36815704</pmid><doi>10.1002/jlcr.4019</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2087-5125</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0362-4803
ispartof Journal of labelled compounds & radiopharmaceuticals, 2023-07, Vol.66 (9), p.205-221
issn 0362-4803
1099-1344
language eng
recordid cdi_proquest_miscellaneous_2779350856
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biological activity
Biological Transport
Blood-brain barrier
Blood-Brain Barrier - diagnostic imaging
Blood-Brain Barrier - metabolism
Brain - diagnostic imaging
Brain - metabolism
carbon‐11
Central nervous system
Drug development
Fluorine
Fluorine Radioisotopes - metabolism
fluorine‐18
F‐18
In vivo methods and tests
Medical imaging
Neuroimaging
PET
Pharmacokinetics
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Radioactive tracers
Radiopharmaceuticals - metabolism
Tomography
title Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20designing%20novel%20positron%20emission%20tomography%20(PET)%20radiotracers%20to%20cross%20the%20blood%E2%80%93brain%20barrier&rft.jtitle=Journal%20of%20labelled%20compounds%20&%20radiopharmaceuticals&rft.au=Lindberg,%20Anton&rft.date=2023-07&rft.volume=66&rft.issue=9&rft.spage=205&rft.epage=221&rft.pages=205-221&rft.issn=0362-4803&rft.eissn=1099-1344&rft_id=info:doi/10.1002/jlcr.4019&rft_dat=%3Cproquest_cross%3E2840142682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840142682&rft_id=info:pmid/36815704&rfr_iscdi=true