Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier
Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer...
Gespeichert in:
Veröffentlicht in: | Journal of labelled compounds & radiopharmaceuticals 2023-07, Vol.66 (9), p.205-221 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 9 |
container_start_page | 205 |
container_title | Journal of labelled compounds & radiopharmaceuticals |
container_volume | 66 |
creator | Lindberg, Anton Chassé, Melissa Varlow, Cassis Pees, Anna Vasdev, Neil |
description | Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non‐specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon‐11 (11C) or fluorine‐18 (18F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program.
Designing PET radiotracers with the ability to cross the blood–brain barrier remains a major challenge. This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can aid in the development of novel CNS PET radiotracers. |
doi_str_mv | 10.1002/jlcr.4019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779350856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840142682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-849eaf5182ba6af5c87b43255ec3c7337cdbdbc9680643054ee1d91fdfff9ae13</originalsourceid><addsrcrecordid>eNp1kc1O4zAURi0EGjrMLHgBZIkNLAJ27CT2ElWdH1QJBMzacpyb4iqNy3XKqDvegTecJxmXAgskVv6ke3Tkez9CDjk744zl5_PO4ZlkXO-QEWdaZ1xIuUtGTJR5JhUT--RrjHPG0kzKL2RflIoXFZMj8nA7oB1g5iHSNiBtIPpZ7_sZ7cMjdHQZoh8w9BQWPkafwhAWYYZ2eb-mJ9eTu1OKtvEhWRxgTFPqMMQU7oHWXQjNv6fnGq3vaW0RPeA3stfaLsL31_eA_PkxuRv_yqZXP3-PL6aZE4XQmZIabFtwlde2TMGpqpYiLwpwwlVCVK6pm9rpUrFSClZIAN5o3jZt22oLXByQk613ieFhBXEwaQMHXWd7CKto8qrSomCqKBN6_AGdhxX26XcmV-muMi9VnqjTLfWyIEJrlugXFteGM7PpwWx6MJseEnv0alzVC2jeybfDJ-B8C_z1Haw_N5nL6fjmRfkf_aGU1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840142682</pqid></control><display><type>article</type><title>Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lindberg, Anton ; Chassé, Melissa ; Varlow, Cassis ; Pees, Anna ; Vasdev, Neil</creator><creatorcontrib>Lindberg, Anton ; Chassé, Melissa ; Varlow, Cassis ; Pees, Anna ; Vasdev, Neil</creatorcontrib><description>Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non‐specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon‐11 (11C) or fluorine‐18 (18F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program.
Designing PET radiotracers with the ability to cross the blood–brain barrier remains a major challenge. This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can aid in the development of novel CNS PET radiotracers.</description><identifier>ISSN: 0362-4803</identifier><identifier>EISSN: 1099-1344</identifier><identifier>DOI: 10.1002/jlcr.4019</identifier><identifier>PMID: 36815704</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biological activity ; Biological Transport ; Blood-brain barrier ; Blood-Brain Barrier - diagnostic imaging ; Blood-Brain Barrier - metabolism ; Brain - diagnostic imaging ; Brain - metabolism ; carbon‐11 ; Central nervous system ; Drug development ; Fluorine ; Fluorine Radioisotopes - metabolism ; fluorine‐18 ; F‐18 ; In vivo methods and tests ; Medical imaging ; Neuroimaging ; PET ; Pharmacokinetics ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Radioactive tracers ; Radiopharmaceuticals - metabolism ; Tomography</subject><ispartof>Journal of labelled compounds & radiopharmaceuticals, 2023-07, Vol.66 (9), p.205-221</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-849eaf5182ba6af5c87b43255ec3c7337cdbdbc9680643054ee1d91fdfff9ae13</citedby><cites>FETCH-LOGICAL-c3539-849eaf5182ba6af5c87b43255ec3c7337cdbdbc9680643054ee1d91fdfff9ae13</cites><orcidid>0000-0002-2087-5125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjlcr.4019$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjlcr.4019$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36815704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindberg, Anton</creatorcontrib><creatorcontrib>Chassé, Melissa</creatorcontrib><creatorcontrib>Varlow, Cassis</creatorcontrib><creatorcontrib>Pees, Anna</creatorcontrib><creatorcontrib>Vasdev, Neil</creatorcontrib><title>Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier</title><title>Journal of labelled compounds & radiopharmaceuticals</title><addtitle>J Labelled Comp Radiopharm</addtitle><description>Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non‐specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon‐11 (11C) or fluorine‐18 (18F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program.
Designing PET radiotracers with the ability to cross the blood–brain barrier remains a major challenge. This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can aid in the development of novel CNS PET radiotracers.</description><subject>Biological activity</subject><subject>Biological Transport</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - diagnostic imaging</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>carbon‐11</subject><subject>Central nervous system</subject><subject>Drug development</subject><subject>Fluorine</subject><subject>Fluorine Radioisotopes - metabolism</subject><subject>fluorine‐18</subject><subject>F‐18</subject><subject>In vivo methods and tests</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>PET</subject><subject>Pharmacokinetics</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radioactive tracers</subject><subject>Radiopharmaceuticals - metabolism</subject><subject>Tomography</subject><issn>0362-4803</issn><issn>1099-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1O4zAURi0EGjrMLHgBZIkNLAJ27CT2ElWdH1QJBMzacpyb4iqNy3XKqDvegTecJxmXAgskVv6ke3Tkez9CDjk744zl5_PO4ZlkXO-QEWdaZ1xIuUtGTJR5JhUT--RrjHPG0kzKL2RflIoXFZMj8nA7oB1g5iHSNiBtIPpZ7_sZ7cMjdHQZoh8w9BQWPkafwhAWYYZ2eb-mJ9eTu1OKtvEhWRxgTFPqMMQU7oHWXQjNv6fnGq3vaW0RPeA3stfaLsL31_eA_PkxuRv_yqZXP3-PL6aZE4XQmZIabFtwlde2TMGpqpYiLwpwwlVCVK6pm9rpUrFSClZIAN5o3jZt22oLXByQk613ieFhBXEwaQMHXWd7CKto8qrSomCqKBN6_AGdhxX26XcmV-muMi9VnqjTLfWyIEJrlugXFteGM7PpwWx6MJseEnv0alzVC2jeybfDJ-B8C_z1Haw_N5nL6fjmRfkf_aGU1w</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Lindberg, Anton</creator><creator>Chassé, Melissa</creator><creator>Varlow, Cassis</creator><creator>Pees, Anna</creator><creator>Vasdev, Neil</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2087-5125</orcidid></search><sort><creationdate>202307</creationdate><title>Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier</title><author>Lindberg, Anton ; Chassé, Melissa ; Varlow, Cassis ; Pees, Anna ; Vasdev, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-849eaf5182ba6af5c87b43255ec3c7337cdbdbc9680643054ee1d91fdfff9ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological activity</topic><topic>Biological Transport</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - diagnostic imaging</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>carbon‐11</topic><topic>Central nervous system</topic><topic>Drug development</topic><topic>Fluorine</topic><topic>Fluorine Radioisotopes - metabolism</topic><topic>fluorine‐18</topic><topic>F‐18</topic><topic>In vivo methods and tests</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>PET</topic><topic>Pharmacokinetics</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radioactive tracers</topic><topic>Radiopharmaceuticals - metabolism</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindberg, Anton</creatorcontrib><creatorcontrib>Chassé, Melissa</creatorcontrib><creatorcontrib>Varlow, Cassis</creatorcontrib><creatorcontrib>Pees, Anna</creatorcontrib><creatorcontrib>Vasdev, Neil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of labelled compounds & radiopharmaceuticals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindberg, Anton</au><au>Chassé, Melissa</au><au>Varlow, Cassis</au><au>Pees, Anna</au><au>Vasdev, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier</atitle><jtitle>Journal of labelled compounds & radiopharmaceuticals</jtitle><addtitle>J Labelled Comp Radiopharm</addtitle><date>2023-07</date><risdate>2023</risdate><volume>66</volume><issue>9</issue><spage>205</spage><epage>221</epage><pages>205-221</pages><issn>0362-4803</issn><eissn>1099-1344</eissn><abstract>Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood–brain barrier (BBB) remains a major challenge. In addition to being brain‐penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non‐specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon‐11 (11C) or fluorine‐18 (18F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program.
Designing PET radiotracers with the ability to cross the blood–brain barrier remains a major challenge. This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can aid in the development of novel CNS PET radiotracers.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36815704</pmid><doi>10.1002/jlcr.4019</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2087-5125</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-4803 |
ispartof | Journal of labelled compounds & radiopharmaceuticals, 2023-07, Vol.66 (9), p.205-221 |
issn | 0362-4803 1099-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_2779350856 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biological activity Biological Transport Blood-brain barrier Blood-Brain Barrier - diagnostic imaging Blood-Brain Barrier - metabolism Brain - diagnostic imaging Brain - metabolism carbon‐11 Central nervous system Drug development Fluorine Fluorine Radioisotopes - metabolism fluorine‐18 F‐18 In vivo methods and tests Medical imaging Neuroimaging PET Pharmacokinetics Positron emission Positron emission tomography Positron-Emission Tomography - methods Radioactive tracers Radiopharmaceuticals - metabolism Tomography |
title | Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20designing%20novel%20positron%20emission%20tomography%20(PET)%20radiotracers%20to%20cross%20the%20blood%E2%80%93brain%20barrier&rft.jtitle=Journal%20of%20labelled%20compounds%20&%20radiopharmaceuticals&rft.au=Lindberg,%20Anton&rft.date=2023-07&rft.volume=66&rft.issue=9&rft.spage=205&rft.epage=221&rft.pages=205-221&rft.issn=0362-4803&rft.eissn=1099-1344&rft_id=info:doi/10.1002/jlcr.4019&rft_dat=%3Cproquest_cross%3E2840142682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840142682&rft_id=info:pmid/36815704&rfr_iscdi=true |