Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography
The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framew...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2023-02, Vol.62 (5), p.1243-1252 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1252 |
---|---|
container_issue | 5 |
container_start_page | 1243 |
container_title | Applied optics (2004) |
container_volume | 62 |
creator | Zheng, Hang Li, Sikun Cheng, Wei Yuan, Shuai Wang, Xiangzhao |
description | The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framework to reconstruct the profile parameters of multilayer defects in the EUV mask blanks. With the aerial images of the defective mask blanks obtained at different illumination angles and a series of generative adversarial networks, the method enables a way of multilayer defect characterization with high accuracy. |
doi_str_mv | 10.1364/AO.480356 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779345668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775282830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-2b0bab824cc704ff7e5e5e7baf38a566dbf62dda4165ced517a59794281cbc293</originalsourceid><addsrcrecordid>eNpd0E1r2zAYB3AxOta026FfoAh6aQ_OrDdLPobQNwhkhw12M4_lx4lbx0olOV326aeQbIehg4T48ed5_oRcsXzKRCG_zpZTaXKhig9kwplSmWCFOiOT9Cwzxs3Pc3IRwkueiCz1J3IuCsMZ53JCVt_WEJA22KKN1K7Bg43ou98QOzfQMXTDiq5wQJ8-dkih2aEP4Dvo6YDx3fnXQFvnKf6KHjdIxz562HWux0j7Lq7dysN2vf9MPrbQB_xyui_Jj4f77_OnbLF8fJ7PFpnlWsSM13kNteHSWp3LttWo0tE1tMKAKoqmbgveNCDTghYbxTSoUpeSG2Zry0txSW6PuVvv3kYMsdp0wWLfw4BuDBXXuhQyJZlEb_6jL270Q5ruoBQ33Ig8qbujst6F4LGttr7bgN9XLK8O7VezZXVsP9nrU-JYb7D5J__WLf4AOnSBmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775282830</pqid></control><display><type>article</type><title>Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Zheng, Hang ; Li, Sikun ; Cheng, Wei ; Yuan, Shuai ; Wang, Xiangzhao</creator><creatorcontrib>Zheng, Hang ; Li, Sikun ; Cheng, Wei ; Yuan, Shuai ; Wang, Xiangzhao</creatorcontrib><description>The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framework to reconstruct the profile parameters of multilayer defects in the EUV mask blanks. With the aerial images of the defective mask blanks obtained at different illumination angles and a series of generative adversarial networks, the method enables a way of multilayer defect characterization with high accuracy.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.480356</identifier><identifier>PMID: 36821224</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Artificial neural networks ; Blanks ; Defects ; Extreme ultraviolet radiation ; Generative adversarial networks ; Lithography ; Multilayers</subject><ispartof>Applied optics (2004), 2023-02, Vol.62 (5), p.1243-1252</ispartof><rights>Copyright Optical Society of America Feb 10, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-2b0bab824cc704ff7e5e5e7baf38a566dbf62dda4165ced517a59794281cbc293</cites><orcidid>0000-0001-5566-7150 ; 0000-0001-9911-6748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36821224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Hang</creatorcontrib><creatorcontrib>Li, Sikun</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Wang, Xiangzhao</creatorcontrib><title>Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framework to reconstruct the profile parameters of multilayer defects in the EUV mask blanks. With the aerial images of the defective mask blanks obtained at different illumination angles and a series of generative adversarial networks, the method enables a way of multilayer defect characterization with high accuracy.</description><subject>Artificial neural networks</subject><subject>Blanks</subject><subject>Defects</subject><subject>Extreme ultraviolet radiation</subject><subject>Generative adversarial networks</subject><subject>Lithography</subject><subject>Multilayers</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0E1r2zAYB3AxOta026FfoAh6aQ_OrDdLPobQNwhkhw12M4_lx4lbx0olOV326aeQbIehg4T48ed5_oRcsXzKRCG_zpZTaXKhig9kwplSmWCFOiOT9Cwzxs3Pc3IRwkueiCz1J3IuCsMZ53JCVt_WEJA22KKN1K7Bg43ou98QOzfQMXTDiq5wQJ8-dkih2aEP4Dvo6YDx3fnXQFvnKf6KHjdIxz562HWux0j7Lq7dysN2vf9MPrbQB_xyui_Jj4f77_OnbLF8fJ7PFpnlWsSM13kNteHSWp3LttWo0tE1tMKAKoqmbgveNCDTghYbxTSoUpeSG2Zry0txSW6PuVvv3kYMsdp0wWLfw4BuDBXXuhQyJZlEb_6jL270Q5ruoBQ33Ig8qbujst6F4LGttr7bgN9XLK8O7VezZXVsP9nrU-JYb7D5J__WLf4AOnSBmQ</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Zheng, Hang</creator><creator>Li, Sikun</creator><creator>Cheng, Wei</creator><creator>Yuan, Shuai</creator><creator>Wang, Xiangzhao</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5566-7150</orcidid><orcidid>https://orcid.org/0000-0001-9911-6748</orcidid></search><sort><creationdate>20230210</creationdate><title>Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography</title><author>Zheng, Hang ; Li, Sikun ; Cheng, Wei ; Yuan, Shuai ; Wang, Xiangzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-2b0bab824cc704ff7e5e5e7baf38a566dbf62dda4165ced517a59794281cbc293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Blanks</topic><topic>Defects</topic><topic>Extreme ultraviolet radiation</topic><topic>Generative adversarial networks</topic><topic>Lithography</topic><topic>Multilayers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hang</creatorcontrib><creatorcontrib>Li, Sikun</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Wang, Xiangzhao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hang</au><au>Li, Sikun</au><au>Cheng, Wei</au><au>Yuan, Shuai</au><au>Wang, Xiangzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>62</volume><issue>5</issue><spage>1243</spage><epage>1252</epage><pages>1243-1252</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framework to reconstruct the profile parameters of multilayer defects in the EUV mask blanks. With the aerial images of the defective mask blanks obtained at different illumination angles and a series of generative adversarial networks, the method enables a way of multilayer defect characterization with high accuracy.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>36821224</pmid><doi>10.1364/AO.480356</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5566-7150</orcidid><orcidid>https://orcid.org/0000-0001-9911-6748</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2023-02, Vol.62 (5), p.1243-1252 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2779345668 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Artificial neural networks Blanks Defects Extreme ultraviolet radiation Generative adversarial networks Lithography Multilayers |
title | Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20defect%20characterization%20using%20generative%20adversarial%20networks%20for%20extreme%20ultraviolet%20lithography&rft.jtitle=Applied%20optics%20(2004)&rft.au=Zheng,%20Hang&rft.date=2023-02-10&rft.volume=62&rft.issue=5&rft.spage=1243&rft.epage=1252&rft.pages=1243-1252&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.480356&rft_dat=%3Cproquest_cross%3E2775282830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775282830&rft_id=info:pmid/36821224&rfr_iscdi=true |