Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography

The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framew...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2023-02, Vol.62 (5), p.1243-1252
Hauptverfasser: Zheng, Hang, Li, Sikun, Cheng, Wei, Yuan, Shuai, Wang, Xiangzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1252
container_issue 5
container_start_page 1243
container_title Applied optics (2004)
container_volume 62
creator Zheng, Hang
Li, Sikun
Cheng, Wei
Yuan, Shuai
Wang, Xiangzhao
description The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framework to reconstruct the profile parameters of multilayer defects in the EUV mask blanks. With the aerial images of the defective mask blanks obtained at different illumination angles and a series of generative adversarial networks, the method enables a way of multilayer defect characterization with high accuracy.
doi_str_mv 10.1364/AO.480356
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779345668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775282830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-2b0bab824cc704ff7e5e5e7baf38a566dbf62dda4165ced517a59794281cbc293</originalsourceid><addsrcrecordid>eNpd0E1r2zAYB3AxOta026FfoAh6aQ_OrDdLPobQNwhkhw12M4_lx4lbx0olOV326aeQbIehg4T48ed5_oRcsXzKRCG_zpZTaXKhig9kwplSmWCFOiOT9Cwzxs3Pc3IRwkueiCz1J3IuCsMZ53JCVt_WEJA22KKN1K7Bg43ou98QOzfQMXTDiq5wQJ8-dkih2aEP4Dvo6YDx3fnXQFvnKf6KHjdIxz562HWux0j7Lq7dysN2vf9MPrbQB_xyui_Jj4f77_OnbLF8fJ7PFpnlWsSM13kNteHSWp3LttWo0tE1tMKAKoqmbgveNCDTghYbxTSoUpeSG2Zry0txSW6PuVvv3kYMsdp0wWLfw4BuDBXXuhQyJZlEb_6jL270Q5ruoBQ33Ig8qbujst6F4LGttr7bgN9XLK8O7VezZXVsP9nrU-JYb7D5J__WLf4AOnSBmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775282830</pqid></control><display><type>article</type><title>Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Zheng, Hang ; Li, Sikun ; Cheng, Wei ; Yuan, Shuai ; Wang, Xiangzhao</creator><creatorcontrib>Zheng, Hang ; Li, Sikun ; Cheng, Wei ; Yuan, Shuai ; Wang, Xiangzhao</creatorcontrib><description>The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framework to reconstruct the profile parameters of multilayer defects in the EUV mask blanks. With the aerial images of the defective mask blanks obtained at different illumination angles and a series of generative adversarial networks, the method enables a way of multilayer defect characterization with high accuracy.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.480356</identifier><identifier>PMID: 36821224</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Artificial neural networks ; Blanks ; Defects ; Extreme ultraviolet radiation ; Generative adversarial networks ; Lithography ; Multilayers</subject><ispartof>Applied optics (2004), 2023-02, Vol.62 (5), p.1243-1252</ispartof><rights>Copyright Optical Society of America Feb 10, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-2b0bab824cc704ff7e5e5e7baf38a566dbf62dda4165ced517a59794281cbc293</cites><orcidid>0000-0001-5566-7150 ; 0000-0001-9911-6748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36821224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Hang</creatorcontrib><creatorcontrib>Li, Sikun</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Wang, Xiangzhao</creatorcontrib><title>Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framework to reconstruct the profile parameters of multilayer defects in the EUV mask blanks. With the aerial images of the defective mask blanks obtained at different illumination angles and a series of generative adversarial networks, the method enables a way of multilayer defect characterization with high accuracy.</description><subject>Artificial neural networks</subject><subject>Blanks</subject><subject>Defects</subject><subject>Extreme ultraviolet radiation</subject><subject>Generative adversarial networks</subject><subject>Lithography</subject><subject>Multilayers</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0E1r2zAYB3AxOta026FfoAh6aQ_OrDdLPobQNwhkhw12M4_lx4lbx0olOV326aeQbIehg4T48ed5_oRcsXzKRCG_zpZTaXKhig9kwplSmWCFOiOT9Cwzxs3Pc3IRwkueiCz1J3IuCsMZ53JCVt_WEJA22KKN1K7Bg43ou98QOzfQMXTDiq5wQJ8-dkih2aEP4Dvo6YDx3fnXQFvnKf6KHjdIxz562HWux0j7Lq7dysN2vf9MPrbQB_xyui_Jj4f77_OnbLF8fJ7PFpnlWsSM13kNteHSWp3LttWo0tE1tMKAKoqmbgveNCDTghYbxTSoUpeSG2Zry0txSW6PuVvv3kYMsdp0wWLfw4BuDBXXuhQyJZlEb_6jL270Q5ruoBQ33Ig8qbujst6F4LGttr7bgN9XLK8O7VezZXVsP9nrU-JYb7D5J__WLf4AOnSBmQ</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Zheng, Hang</creator><creator>Li, Sikun</creator><creator>Cheng, Wei</creator><creator>Yuan, Shuai</creator><creator>Wang, Xiangzhao</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5566-7150</orcidid><orcidid>https://orcid.org/0000-0001-9911-6748</orcidid></search><sort><creationdate>20230210</creationdate><title>Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography</title><author>Zheng, Hang ; Li, Sikun ; Cheng, Wei ; Yuan, Shuai ; Wang, Xiangzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-2b0bab824cc704ff7e5e5e7baf38a566dbf62dda4165ced517a59794281cbc293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Blanks</topic><topic>Defects</topic><topic>Extreme ultraviolet radiation</topic><topic>Generative adversarial networks</topic><topic>Lithography</topic><topic>Multilayers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hang</creatorcontrib><creatorcontrib>Li, Sikun</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Wang, Xiangzhao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hang</au><au>Li, Sikun</au><au>Cheng, Wei</au><au>Yuan, Shuai</au><au>Wang, Xiangzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>62</volume><issue>5</issue><spage>1243</spage><epage>1252</epage><pages>1243-1252</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>The multilayer defects of mask blanks in extreme ultraviolet (EUV) lithography may cause severe reflectivity deformation and phase shift. The profile information of a multilayer defect is the key factor for mask defect compensation or repair. This paper introduces an artificial neural network framework to reconstruct the profile parameters of multilayer defects in the EUV mask blanks. With the aerial images of the defective mask blanks obtained at different illumination angles and a series of generative adversarial networks, the method enables a way of multilayer defect characterization with high accuracy.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>36821224</pmid><doi>10.1364/AO.480356</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5566-7150</orcidid><orcidid>https://orcid.org/0000-0001-9911-6748</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2023-02, Vol.62 (5), p.1243-1252
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2779345668
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Artificial neural networks
Blanks
Defects
Extreme ultraviolet radiation
Generative adversarial networks
Lithography
Multilayers
title Phase defect characterization using generative adversarial networks for extreme ultraviolet lithography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20defect%20characterization%20using%20generative%20adversarial%20networks%20for%20extreme%20ultraviolet%20lithography&rft.jtitle=Applied%20optics%20(2004)&rft.au=Zheng,%20Hang&rft.date=2023-02-10&rft.volume=62&rft.issue=5&rft.spage=1243&rft.epage=1252&rft.pages=1243-1252&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.480356&rft_dat=%3Cproquest_cross%3E2775282830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775282830&rft_id=info:pmid/36821224&rfr_iscdi=true