Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle

This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the gla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2023-02, Vol.62 (4), p.1123-1129
Hauptverfasser: Kanchi, Sunil, Shukla, Rohit, Dey, Premananda, Dubey, A K, Sagar, K, Sharma, Archana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1129
container_issue 4
container_start_page 1123
container_title Applied optics (2004)
container_volume 62
creator Kanchi, Sunil
Shukla, Rohit
Dey, Premananda
Dubey, A K
Sagar, K
Sharma, Archana
description This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the glass, the Faraday effect produces non-reciprocal circular birefringence. This property of the Faraday effect adds rotations when the light beam is reflected using a mirror placed at the other end of the glass and passed through the glass, making double transit of light through the sensor element. Experiments were carried out to verify the characteristics of the designed probe by inserting it inside the solenoid load coil. The Verdet constant of the glass is determined using the slope of the linear least-squares fitted curve between the Faraday rotation angle and the applied magnetic field, obtained as 89.22 /( ⋅ ) with a relative uncertainty of 2.43%. The magnetic field was measured with 0.28% accuracy. In the optics experiments, alignment of components is the major task. To the authors' knowledge, this is the first of its kind double transit miniaturized magnetic field measurement probe configuration in which components are aligned inside the single probe structure. The probe is easily portable and can be used in inaccessible locations in various applications such as accelerators, / pinch devices, or fusion reactors such as tokamaks, in which the magnetic field is one of the main parameters.
doi_str_mv 10.1364/AO.479671
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779345307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779345307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-73f38ffd39665f8e977a2e89fa15aa7028e2fa963210406288999a24bc3b49683</originalsourceid><addsrcrecordid>eNpd0LlOxDAQBmALgWA5Cl4AWaKBIhAf8VGuEJcE2gYkumiSjMEoccB2Cnh6ghYoqGaKT79mfkIOWXnGhJLny9WZ1FZptkEWnFVVIZiqNsliXm3BuHnaIbspvZalqKTV22RHKMMZ02JB4N4HD3mK_hM72o1T0yPNEULymQ7wHDD7ljqPfUcHhDRFHDBk-hbHBumUfHim-QXpFUTo4IPGMUP2Y5iBD61_63GfbDnoEx78zD3yeHX5cHFT3K2uby-Wd0XLtciFFk4Y5zphlaqcQas1cDTWAasAdMkNcgdWCc5KWSpujLUWuGxa0UirjNgjJ-vc-bT3CVOuB59a7HsIOE6p5lpbIStR6pke_6Ov4xTDfN23klwKU8lZna5VG8eUIrp6_mmA-FGzsv7uvV6u6nXvsz36SZyaAbs_-Vu0-AK7E30F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774243854</pqid></control><display><type>article</type><title>Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Kanchi, Sunil ; Shukla, Rohit ; Dey, Premananda ; Dubey, A K ; Sagar, K ; Sharma, Archana</creator><creatorcontrib>Kanchi, Sunil ; Shukla, Rohit ; Dey, Premananda ; Dubey, A K ; Sagar, K ; Sharma, Archana</creatorcontrib><description>This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the glass, the Faraday effect produces non-reciprocal circular birefringence. This property of the Faraday effect adds rotations when the light beam is reflected using a mirror placed at the other end of the glass and passed through the glass, making double transit of light through the sensor element. Experiments were carried out to verify the characteristics of the designed probe by inserting it inside the solenoid load coil. The Verdet constant of the glass is determined using the slope of the linear least-squares fitted curve between the Faraday rotation angle and the applied magnetic field, obtained as 89.22 /( ⋅ ) with a relative uncertainty of 2.43%. The magnetic field was measured with 0.28% accuracy. In the optics experiments, alignment of components is the major task. To the authors' knowledge, this is the first of its kind double transit miniaturized magnetic field measurement probe configuration in which components are aligned inside the single probe structure. The probe is easily portable and can be used in inaccessible locations in various applications such as accelerators, / pinch devices, or fusion reactors such as tokamaks, in which the magnetic field is one of the main parameters.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.479671</identifier><identifier>PMID: 36821173</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Birefringence ; Borosilicate glass ; Faraday effect ; Fusion reactors ; Light beams ; Magnetic fields ; Magnetic measurement ; Magnetism ; Principles ; Solenoids ; Tokamak devices ; Transit ; Verdet constant</subject><ispartof>Applied optics (2004), 2023-02, Vol.62 (4), p.1123-1129</ispartof><rights>Copyright Optical Society of America Feb 1, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-73f38ffd39665f8e977a2e89fa15aa7028e2fa963210406288999a24bc3b49683</cites><orcidid>0000-0002-1920-2556 ; 0000-0001-8664-447X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3260,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36821173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanchi, Sunil</creatorcontrib><creatorcontrib>Shukla, Rohit</creatorcontrib><creatorcontrib>Dey, Premananda</creatorcontrib><creatorcontrib>Dubey, A K</creatorcontrib><creatorcontrib>Sagar, K</creatorcontrib><creatorcontrib>Sharma, Archana</creatorcontrib><title>Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the glass, the Faraday effect produces non-reciprocal circular birefringence. This property of the Faraday effect adds rotations when the light beam is reflected using a mirror placed at the other end of the glass and passed through the glass, making double transit of light through the sensor element. Experiments were carried out to verify the characteristics of the designed probe by inserting it inside the solenoid load coil. The Verdet constant of the glass is determined using the slope of the linear least-squares fitted curve between the Faraday rotation angle and the applied magnetic field, obtained as 89.22 /( ⋅ ) with a relative uncertainty of 2.43%. The magnetic field was measured with 0.28% accuracy. In the optics experiments, alignment of components is the major task. To the authors' knowledge, this is the first of its kind double transit miniaturized magnetic field measurement probe configuration in which components are aligned inside the single probe structure. The probe is easily portable and can be used in inaccessible locations in various applications such as accelerators, / pinch devices, or fusion reactors such as tokamaks, in which the magnetic field is one of the main parameters.</description><subject>Birefringence</subject><subject>Borosilicate glass</subject><subject>Faraday effect</subject><subject>Fusion reactors</subject><subject>Light beams</subject><subject>Magnetic fields</subject><subject>Magnetic measurement</subject><subject>Magnetism</subject><subject>Principles</subject><subject>Solenoids</subject><subject>Tokamak devices</subject><subject>Transit</subject><subject>Verdet constant</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0LlOxDAQBmALgWA5Cl4AWaKBIhAf8VGuEJcE2gYkumiSjMEoccB2Cnh6ghYoqGaKT79mfkIOWXnGhJLny9WZ1FZptkEWnFVVIZiqNsliXm3BuHnaIbspvZalqKTV22RHKMMZ02JB4N4HD3mK_hM72o1T0yPNEULymQ7wHDD7ljqPfUcHhDRFHDBk-hbHBumUfHim-QXpFUTo4IPGMUP2Y5iBD61_63GfbDnoEx78zD3yeHX5cHFT3K2uby-Wd0XLtciFFk4Y5zphlaqcQas1cDTWAasAdMkNcgdWCc5KWSpujLUWuGxa0UirjNgjJ-vc-bT3CVOuB59a7HsIOE6p5lpbIStR6pke_6Ov4xTDfN23klwKU8lZna5VG8eUIrp6_mmA-FGzsv7uvV6u6nXvsz36SZyaAbs_-Vu0-AK7E30F</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Kanchi, Sunil</creator><creator>Shukla, Rohit</creator><creator>Dey, Premananda</creator><creator>Dubey, A K</creator><creator>Sagar, K</creator><creator>Sharma, Archana</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1920-2556</orcidid><orcidid>https://orcid.org/0000-0001-8664-447X</orcidid></search><sort><creationdate>20230201</creationdate><title>Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle</title><author>Kanchi, Sunil ; Shukla, Rohit ; Dey, Premananda ; Dubey, A K ; Sagar, K ; Sharma, Archana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-73f38ffd39665f8e977a2e89fa15aa7028e2fa963210406288999a24bc3b49683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Birefringence</topic><topic>Borosilicate glass</topic><topic>Faraday effect</topic><topic>Fusion reactors</topic><topic>Light beams</topic><topic>Magnetic fields</topic><topic>Magnetic measurement</topic><topic>Magnetism</topic><topic>Principles</topic><topic>Solenoids</topic><topic>Tokamak devices</topic><topic>Transit</topic><topic>Verdet constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanchi, Sunil</creatorcontrib><creatorcontrib>Shukla, Rohit</creatorcontrib><creatorcontrib>Dey, Premananda</creatorcontrib><creatorcontrib>Dubey, A K</creatorcontrib><creatorcontrib>Sagar, K</creatorcontrib><creatorcontrib>Sharma, Archana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanchi, Sunil</au><au>Shukla, Rohit</au><au>Dey, Premananda</au><au>Dubey, A K</au><au>Sagar, K</au><au>Sharma, Archana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>62</volume><issue>4</issue><spage>1123</spage><epage>1129</epage><pages>1123-1129</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the glass, the Faraday effect produces non-reciprocal circular birefringence. This property of the Faraday effect adds rotations when the light beam is reflected using a mirror placed at the other end of the glass and passed through the glass, making double transit of light through the sensor element. Experiments were carried out to verify the characteristics of the designed probe by inserting it inside the solenoid load coil. The Verdet constant of the glass is determined using the slope of the linear least-squares fitted curve between the Faraday rotation angle and the applied magnetic field, obtained as 89.22 /( ⋅ ) with a relative uncertainty of 2.43%. The magnetic field was measured with 0.28% accuracy. In the optics experiments, alignment of components is the major task. To the authors' knowledge, this is the first of its kind double transit miniaturized magnetic field measurement probe configuration in which components are aligned inside the single probe structure. The probe is easily portable and can be used in inaccessible locations in various applications such as accelerators, / pinch devices, or fusion reactors such as tokamaks, in which the magnetic field is one of the main parameters.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>36821173</pmid><doi>10.1364/AO.479671</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1920-2556</orcidid><orcidid>https://orcid.org/0000-0001-8664-447X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2023-02, Vol.62 (4), p.1123-1129
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2779345307
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Birefringence
Borosilicate glass
Faraday effect
Fusion reactors
Light beams
Magnetic fields
Magnetic measurement
Magnetism
Principles
Solenoids
Tokamak devices
Transit
Verdet constant
title Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-07T05%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturized%20double%20transit%20magnetic%20field%20measurement%20probe%20using%20the%20Faraday%20rotation%20principle&rft.jtitle=Applied%20optics%20(2004)&rft.au=Kanchi,%20Sunil&rft.date=2023-02-01&rft.volume=62&rft.issue=4&rft.spage=1123&rft.epage=1129&rft.pages=1123-1129&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.479671&rft_dat=%3Cproquest_cross%3E2779345307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774243854&rft_id=info:pmid/36821173&rfr_iscdi=true