Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle
This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the gla...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2023-02, Vol.62 (4), p.1123-1129 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1129 |
---|---|
container_issue | 4 |
container_start_page | 1123 |
container_title | Applied optics (2004) |
container_volume | 62 |
creator | Kanchi, Sunil Shukla, Rohit Dey, Premananda Dubey, A K Sagar, K Sharma, Archana |
description | This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the glass, the Faraday effect produces non-reciprocal circular birefringence. This property of the Faraday effect adds rotations when the light beam is reflected using a mirror placed at the other end of the glass and passed through the glass, making double transit of light through the sensor element. Experiments were carried out to verify the characteristics of the designed probe by inserting it inside the solenoid load coil. The Verdet constant of the glass is determined using the slope of the linear least-squares fitted curve between the Faraday rotation angle and the applied magnetic field, obtained as 89.22
/(
⋅
) with a relative uncertainty of 2.43%. The magnetic field was measured with 0.28% accuracy. In the optics experiments, alignment of components is the major task. To the authors' knowledge, this is the first of its kind double transit miniaturized magnetic field measurement probe configuration in which components are aligned inside the single probe structure. The probe is easily portable and can be used in inaccessible locations in various applications such as accelerators,
/
pinch devices, or fusion reactors such as tokamaks, in which the magnetic field is one of the main parameters. |
doi_str_mv | 10.1364/AO.479671 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779345307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779345307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-73f38ffd39665f8e977a2e89fa15aa7028e2fa963210406288999a24bc3b49683</originalsourceid><addsrcrecordid>eNpd0LlOxDAQBmALgWA5Cl4AWaKBIhAf8VGuEJcE2gYkumiSjMEoccB2Cnh6ghYoqGaKT79mfkIOWXnGhJLny9WZ1FZptkEWnFVVIZiqNsliXm3BuHnaIbspvZalqKTV22RHKMMZ02JB4N4HD3mK_hM72o1T0yPNEULymQ7wHDD7ljqPfUcHhDRFHDBk-hbHBumUfHim-QXpFUTo4IPGMUP2Y5iBD61_63GfbDnoEx78zD3yeHX5cHFT3K2uby-Wd0XLtciFFk4Y5zphlaqcQas1cDTWAasAdMkNcgdWCc5KWSpujLUWuGxa0UirjNgjJ-vc-bT3CVOuB59a7HsIOE6p5lpbIStR6pke_6Ov4xTDfN23klwKU8lZna5VG8eUIrp6_mmA-FGzsv7uvV6u6nXvsz36SZyaAbs_-Vu0-AK7E30F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774243854</pqid></control><display><type>article</type><title>Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Kanchi, Sunil ; Shukla, Rohit ; Dey, Premananda ; Dubey, A K ; Sagar, K ; Sharma, Archana</creator><creatorcontrib>Kanchi, Sunil ; Shukla, Rohit ; Dey, Premananda ; Dubey, A K ; Sagar, K ; Sharma, Archana</creatorcontrib><description>This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the glass, the Faraday effect produces non-reciprocal circular birefringence. This property of the Faraday effect adds rotations when the light beam is reflected using a mirror placed at the other end of the glass and passed through the glass, making double transit of light through the sensor element. Experiments were carried out to verify the characteristics of the designed probe by inserting it inside the solenoid load coil. The Verdet constant of the glass is determined using the slope of the linear least-squares fitted curve between the Faraday rotation angle and the applied magnetic field, obtained as 89.22
/(
⋅
) with a relative uncertainty of 2.43%. The magnetic field was measured with 0.28% accuracy. In the optics experiments, alignment of components is the major task. To the authors' knowledge, this is the first of its kind double transit miniaturized magnetic field measurement probe configuration in which components are aligned inside the single probe structure. The probe is easily portable and can be used in inaccessible locations in various applications such as accelerators,
/
pinch devices, or fusion reactors such as tokamaks, in which the magnetic field is one of the main parameters.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.479671</identifier><identifier>PMID: 36821173</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Birefringence ; Borosilicate glass ; Faraday effect ; Fusion reactors ; Light beams ; Magnetic fields ; Magnetic measurement ; Magnetism ; Principles ; Solenoids ; Tokamak devices ; Transit ; Verdet constant</subject><ispartof>Applied optics (2004), 2023-02, Vol.62 (4), p.1123-1129</ispartof><rights>Copyright Optical Society of America Feb 1, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-73f38ffd39665f8e977a2e89fa15aa7028e2fa963210406288999a24bc3b49683</cites><orcidid>0000-0002-1920-2556 ; 0000-0001-8664-447X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3260,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36821173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanchi, Sunil</creatorcontrib><creatorcontrib>Shukla, Rohit</creatorcontrib><creatorcontrib>Dey, Premananda</creatorcontrib><creatorcontrib>Dubey, A K</creatorcontrib><creatorcontrib>Sagar, K</creatorcontrib><creatorcontrib>Sharma, Archana</creatorcontrib><title>Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the glass, the Faraday effect produces non-reciprocal circular birefringence. This property of the Faraday effect adds rotations when the light beam is reflected using a mirror placed at the other end of the glass and passed through the glass, making double transit of light through the sensor element. Experiments were carried out to verify the characteristics of the designed probe by inserting it inside the solenoid load coil. The Verdet constant of the glass is determined using the slope of the linear least-squares fitted curve between the Faraday rotation angle and the applied magnetic field, obtained as 89.22
/(
⋅
) with a relative uncertainty of 2.43%. The magnetic field was measured with 0.28% accuracy. In the optics experiments, alignment of components is the major task. To the authors' knowledge, this is the first of its kind double transit miniaturized magnetic field measurement probe configuration in which components are aligned inside the single probe structure. The probe is easily portable and can be used in inaccessible locations in various applications such as accelerators,
/
pinch devices, or fusion reactors such as tokamaks, in which the magnetic field is one of the main parameters.</description><subject>Birefringence</subject><subject>Borosilicate glass</subject><subject>Faraday effect</subject><subject>Fusion reactors</subject><subject>Light beams</subject><subject>Magnetic fields</subject><subject>Magnetic measurement</subject><subject>Magnetism</subject><subject>Principles</subject><subject>Solenoids</subject><subject>Tokamak devices</subject><subject>Transit</subject><subject>Verdet constant</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0LlOxDAQBmALgWA5Cl4AWaKBIhAf8VGuEJcE2gYkumiSjMEoccB2Cnh6ghYoqGaKT79mfkIOWXnGhJLny9WZ1FZptkEWnFVVIZiqNsliXm3BuHnaIbspvZalqKTV22RHKMMZ02JB4N4HD3mK_hM72o1T0yPNEULymQ7wHDD7ljqPfUcHhDRFHDBk-hbHBumUfHim-QXpFUTo4IPGMUP2Y5iBD61_63GfbDnoEx78zD3yeHX5cHFT3K2uby-Wd0XLtciFFk4Y5zphlaqcQas1cDTWAasAdMkNcgdWCc5KWSpujLUWuGxa0UirjNgjJ-vc-bT3CVOuB59a7HsIOE6p5lpbIStR6pke_6Ov4xTDfN23klwKU8lZna5VG8eUIrp6_mmA-FGzsv7uvV6u6nXvsz36SZyaAbs_-Vu0-AK7E30F</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Kanchi, Sunil</creator><creator>Shukla, Rohit</creator><creator>Dey, Premananda</creator><creator>Dubey, A K</creator><creator>Sagar, K</creator><creator>Sharma, Archana</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1920-2556</orcidid><orcidid>https://orcid.org/0000-0001-8664-447X</orcidid></search><sort><creationdate>20230201</creationdate><title>Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle</title><author>Kanchi, Sunil ; Shukla, Rohit ; Dey, Premananda ; Dubey, A K ; Sagar, K ; Sharma, Archana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-73f38ffd39665f8e977a2e89fa15aa7028e2fa963210406288999a24bc3b49683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Birefringence</topic><topic>Borosilicate glass</topic><topic>Faraday effect</topic><topic>Fusion reactors</topic><topic>Light beams</topic><topic>Magnetic fields</topic><topic>Magnetic measurement</topic><topic>Magnetism</topic><topic>Principles</topic><topic>Solenoids</topic><topic>Tokamak devices</topic><topic>Transit</topic><topic>Verdet constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanchi, Sunil</creatorcontrib><creatorcontrib>Shukla, Rohit</creatorcontrib><creatorcontrib>Dey, Premananda</creatorcontrib><creatorcontrib>Dubey, A K</creatorcontrib><creatorcontrib>Sagar, K</creatorcontrib><creatorcontrib>Sharma, Archana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanchi, Sunil</au><au>Shukla, Rohit</au><au>Dey, Premananda</au><au>Dubey, A K</au><au>Sagar, K</au><au>Sharma, Archana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>62</volume><issue>4</issue><spage>1123</spage><epage>1129</epage><pages>1123-1129</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>This paper presents the design and experimental results of a double transit magnetic field measurement probe based on the Faraday rotation principle using terbium doped borosilicate glass as a sensor element. When the magnetic field is applied in the direction of propagation of light through the glass, the Faraday effect produces non-reciprocal circular birefringence. This property of the Faraday effect adds rotations when the light beam is reflected using a mirror placed at the other end of the glass and passed through the glass, making double transit of light through the sensor element. Experiments were carried out to verify the characteristics of the designed probe by inserting it inside the solenoid load coil. The Verdet constant of the glass is determined using the slope of the linear least-squares fitted curve between the Faraday rotation angle and the applied magnetic field, obtained as 89.22
/(
⋅
) with a relative uncertainty of 2.43%. The magnetic field was measured with 0.28% accuracy. In the optics experiments, alignment of components is the major task. To the authors' knowledge, this is the first of its kind double transit miniaturized magnetic field measurement probe configuration in which components are aligned inside the single probe structure. The probe is easily portable and can be used in inaccessible locations in various applications such as accelerators,
/
pinch devices, or fusion reactors such as tokamaks, in which the magnetic field is one of the main parameters.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>36821173</pmid><doi>10.1364/AO.479671</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1920-2556</orcidid><orcidid>https://orcid.org/0000-0001-8664-447X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2023-02, Vol.62 (4), p.1123-1129 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2779345307 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Birefringence Borosilicate glass Faraday effect Fusion reactors Light beams Magnetic fields Magnetic measurement Magnetism Principles Solenoids Tokamak devices Transit Verdet constant |
title | Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-07T05%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturized%20double%20transit%20magnetic%20field%20measurement%20probe%20using%20the%20Faraday%20rotation%20principle&rft.jtitle=Applied%20optics%20(2004)&rft.au=Kanchi,%20Sunil&rft.date=2023-02-01&rft.volume=62&rft.issue=4&rft.spage=1123&rft.epage=1129&rft.pages=1123-1129&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.479671&rft_dat=%3Cproquest_cross%3E2779345307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774243854&rft_id=info:pmid/36821173&rfr_iscdi=true |