On the independent significance of generalizations of the Wigner distribution function
The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. I...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2023-02, Vol.40 (2), p.326-336 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 2 |
container_start_page | 326 |
container_title | Journal of the Optical Society of America. A, Optics, image science, and vision |
container_volume | 40 |
creator | Zheng, Yushi Healy, John J |
description | The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. It is useful to identify which of these novel distributions have independent significance for further investigation. We plot these distributions for a test signal using symbolic integration to find which distributions are linear coordinate transforms of the WDF or have unique features. Five distributions are determined to be linear coordinate transforms of the WDF. Two distributions show unique characteristics. We focus on the mathematical interpretation, properties, and possible applications of those two distributions. We demonstrate how one of them can be used in the analysis of partially coherent systems. |
doi_str_mv | 10.1364/JOSAA.476475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779345291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779345291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-7e1014d0e7672905537d5c1925ded2e51d54c612d79da00f1d79300598053c613</originalsourceid><addsrcrecordid>eNo9kLtPwzAQhy0EoqWwMaOMDKScX3EyVhVPVerAa4xS-1KMUqfYyQB_PQ4tLHc_3X13w0fIOYUp5Zm4flw-zWZToTKh5AEZU8kgzSVnhzFDLlIlWTEiJyF8AIDIcnVMRjzLGWXAxuR16ZLuHRPrDG4xFtclwa6dra2unMakrZM1OvRVY7-rzrYuDKPh5C1i6BNjQ-ftqh92Sd07PYRTclRXTcCzfZ-Ql9ub5_l9uljePcxni1RzVnSpQgpUGECVKVaAlFwZqWnBpEHDUFIjhc4oM6owFUBNY-AAsshB8rjgE3K5-7v17WePoSs3Nmhsmsph24eSqXggooEBvdqh2rcheKzLrbebyn-VFMrBZPlrstyZjPjF_nO_2qD5h__U8R_XnW3m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779345291</pqid></control><display><type>article</type><title>On the independent significance of generalizations of the Wigner distribution function</title><source>Optica Publishing Group Journals</source><creator>Zheng, Yushi ; Healy, John J</creator><creatorcontrib>Zheng, Yushi ; Healy, John J</creatorcontrib><description>The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. It is useful to identify which of these novel distributions have independent significance for further investigation. We plot these distributions for a test signal using symbolic integration to find which distributions are linear coordinate transforms of the WDF or have unique features. Five distributions are determined to be linear coordinate transforms of the WDF. Two distributions show unique characteristics. We focus on the mathematical interpretation, properties, and possible applications of those two distributions. We demonstrate how one of them can be used in the analysis of partially coherent systems.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.476475</identifier><identifier>PMID: 36821202</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2023-02, Vol.40 (2), p.326-336</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-7e1014d0e7672905537d5c1925ded2e51d54c612d79da00f1d79300598053c613</citedby><cites>FETCH-LOGICAL-c329t-7e1014d0e7672905537d5c1925ded2e51d54c612d79da00f1d79300598053c613</cites><orcidid>0000-0003-3075-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36821202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yushi</creatorcontrib><creatorcontrib>Healy, John J</creatorcontrib><title>On the independent significance of generalizations of the Wigner distribution function</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. It is useful to identify which of these novel distributions have independent significance for further investigation. We plot these distributions for a test signal using symbolic integration to find which distributions are linear coordinate transforms of the WDF or have unique features. Five distributions are determined to be linear coordinate transforms of the WDF. Two distributions show unique characteristics. We focus on the mathematical interpretation, properties, and possible applications of those two distributions. We demonstrate how one of them can be used in the analysis of partially coherent systems.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kLtPwzAQhy0EoqWwMaOMDKScX3EyVhVPVerAa4xS-1KMUqfYyQB_PQ4tLHc_3X13w0fIOYUp5Zm4flw-zWZToTKh5AEZU8kgzSVnhzFDLlIlWTEiJyF8AIDIcnVMRjzLGWXAxuR16ZLuHRPrDG4xFtclwa6dra2unMakrZM1OvRVY7-rzrYuDKPh5C1i6BNjQ-ftqh92Sd07PYRTclRXTcCzfZ-Ql9ub5_l9uljePcxni1RzVnSpQgpUGECVKVaAlFwZqWnBpEHDUFIjhc4oM6owFUBNY-AAsshB8rjgE3K5-7v17WePoSs3Nmhsmsph24eSqXggooEBvdqh2rcheKzLrbebyn-VFMrBZPlrstyZjPjF_nO_2qD5h__U8R_XnW3m</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zheng, Yushi</creator><creator>Healy, John J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3075-9248</orcidid></search><sort><creationdate>20230201</creationdate><title>On the independent significance of generalizations of the Wigner distribution function</title><author>Zheng, Yushi ; Healy, John J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-7e1014d0e7672905537d5c1925ded2e51d54c612d79da00f1d79300598053c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yushi</creatorcontrib><creatorcontrib>Healy, John J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yushi</au><au>Healy, John J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the independent significance of generalizations of the Wigner distribution function</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>40</volume><issue>2</issue><spage>326</spage><epage>336</epage><pages>326-336</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. It is useful to identify which of these novel distributions have independent significance for further investigation. We plot these distributions for a test signal using symbolic integration to find which distributions are linear coordinate transforms of the WDF or have unique features. Five distributions are determined to be linear coordinate transforms of the WDF. Two distributions show unique characteristics. We focus on the mathematical interpretation, properties, and possible applications of those two distributions. We demonstrate how one of them can be used in the analysis of partially coherent systems.</abstract><cop>United States</cop><pmid>36821202</pmid><doi>10.1364/JOSAA.476475</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3075-9248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | Journal of the Optical Society of America. A, Optics, image science, and vision, 2023-02, Vol.40 (2), p.326-336 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_proquest_miscellaneous_2779345291 |
source | Optica Publishing Group Journals |
title | On the independent significance of generalizations of the Wigner distribution function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20independent%20significance%20of%20generalizations%20of%20the%20Wigner%20distribution%20function&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Zheng,%20Yushi&rft.date=2023-02-01&rft.volume=40&rft.issue=2&rft.spage=326&rft.epage=336&rft.pages=326-336&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.476475&rft_dat=%3Cproquest_cross%3E2779345291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779345291&rft_id=info:pmid/36821202&rfr_iscdi=true |