On the independent significance of generalizations of the Wigner distribution function

The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2023-02, Vol.40 (2), p.326-336
Hauptverfasser: Zheng, Yushi, Healy, John J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 2
container_start_page 326
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 40
creator Zheng, Yushi
Healy, John J
description The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. It is useful to identify which of these novel distributions have independent significance for further investigation. We plot these distributions for a test signal using symbolic integration to find which distributions are linear coordinate transforms of the WDF or have unique features. Five distributions are determined to be linear coordinate transforms of the WDF. Two distributions show unique characteristics. We focus on the mathematical interpretation, properties, and possible applications of those two distributions. We demonstrate how one of them can be used in the analysis of partially coherent systems.
doi_str_mv 10.1364/JOSAA.476475
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779345291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779345291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-7e1014d0e7672905537d5c1925ded2e51d54c612d79da00f1d79300598053c613</originalsourceid><addsrcrecordid>eNo9kLtPwzAQhy0EoqWwMaOMDKScX3EyVhVPVerAa4xS-1KMUqfYyQB_PQ4tLHc_3X13w0fIOYUp5Zm4flw-zWZToTKh5AEZU8kgzSVnhzFDLlIlWTEiJyF8AIDIcnVMRjzLGWXAxuR16ZLuHRPrDG4xFtclwa6dra2unMakrZM1OvRVY7-rzrYuDKPh5C1i6BNjQ-ftqh92Sd07PYRTclRXTcCzfZ-Ql9ub5_l9uljePcxni1RzVnSpQgpUGECVKVaAlFwZqWnBpEHDUFIjhc4oM6owFUBNY-AAsshB8rjgE3K5-7v17WePoSs3Nmhsmsph24eSqXggooEBvdqh2rcheKzLrbebyn-VFMrBZPlrstyZjPjF_nO_2qD5h__U8R_XnW3m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779345291</pqid></control><display><type>article</type><title>On the independent significance of generalizations of the Wigner distribution function</title><source>Optica Publishing Group Journals</source><creator>Zheng, Yushi ; Healy, John J</creator><creatorcontrib>Zheng, Yushi ; Healy, John J</creatorcontrib><description>The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. It is useful to identify which of these novel distributions have independent significance for further investigation. We plot these distributions for a test signal using symbolic integration to find which distributions are linear coordinate transforms of the WDF or have unique features. Five distributions are determined to be linear coordinate transforms of the WDF. Two distributions show unique characteristics. We focus on the mathematical interpretation, properties, and possible applications of those two distributions. We demonstrate how one of them can be used in the analysis of partially coherent systems.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.476475</identifier><identifier>PMID: 36821202</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2023-02, Vol.40 (2), p.326-336</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-7e1014d0e7672905537d5c1925ded2e51d54c612d79da00f1d79300598053c613</citedby><cites>FETCH-LOGICAL-c329t-7e1014d0e7672905537d5c1925ded2e51d54c612d79da00f1d79300598053c613</cites><orcidid>0000-0003-3075-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36821202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yushi</creatorcontrib><creatorcontrib>Healy, John J</creatorcontrib><title>On the independent significance of generalizations of the Wigner distribution function</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. It is useful to identify which of these novel distributions have independent significance for further investigation. We plot these distributions for a test signal using symbolic integration to find which distributions are linear coordinate transforms of the WDF or have unique features. Five distributions are determined to be linear coordinate transforms of the WDF. Two distributions show unique characteristics. We focus on the mathematical interpretation, properties, and possible applications of those two distributions. We demonstrate how one of them can be used in the analysis of partially coherent systems.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kLtPwzAQhy0EoqWwMaOMDKScX3EyVhVPVerAa4xS-1KMUqfYyQB_PQ4tLHc_3X13w0fIOYUp5Zm4flw-zWZToTKh5AEZU8kgzSVnhzFDLlIlWTEiJyF8AIDIcnVMRjzLGWXAxuR16ZLuHRPrDG4xFtclwa6dra2unMakrZM1OvRVY7-rzrYuDKPh5C1i6BNjQ-ftqh92Sd07PYRTclRXTcCzfZ-Ql9ub5_l9uljePcxni1RzVnSpQgpUGECVKVaAlFwZqWnBpEHDUFIjhc4oM6owFUBNY-AAsshB8rjgE3K5-7v17WePoSs3Nmhsmsph24eSqXggooEBvdqh2rcheKzLrbebyn-VFMrBZPlrstyZjPjF_nO_2qD5h__U8R_XnW3m</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zheng, Yushi</creator><creator>Healy, John J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3075-9248</orcidid></search><sort><creationdate>20230201</creationdate><title>On the independent significance of generalizations of the Wigner distribution function</title><author>Zheng, Yushi ; Healy, John J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-7e1014d0e7672905537d5c1925ded2e51d54c612d79da00f1d79300598053c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yushi</creatorcontrib><creatorcontrib>Healy, John J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yushi</au><au>Healy, John J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the independent significance of generalizations of the Wigner distribution function</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>40</volume><issue>2</issue><spage>326</spage><epage>336</epage><pages>326-336</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>The Wigner distribution function (WDF) is a significant time-frequency analysis tool in, e.g., the theory of optical coherence and signal processing. Recently, various generalizations of the WDF associated with linear canonical transforms have been proposed to improve and broaden its applications. It is useful to identify which of these novel distributions have independent significance for further investigation. We plot these distributions for a test signal using symbolic integration to find which distributions are linear coordinate transforms of the WDF or have unique features. Five distributions are determined to be linear coordinate transforms of the WDF. Two distributions show unique characteristics. We focus on the mathematical interpretation, properties, and possible applications of those two distributions. We demonstrate how one of them can be used in the analysis of partially coherent systems.</abstract><cop>United States</cop><pmid>36821202</pmid><doi>10.1364/JOSAA.476475</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3075-9248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2023-02, Vol.40 (2), p.326-336
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_2779345291
source Optica Publishing Group Journals
title On the independent significance of generalizations of the Wigner distribution function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20independent%20significance%20of%20generalizations%20of%20the%20Wigner%20distribution%20function&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Zheng,%20Yushi&rft.date=2023-02-01&rft.volume=40&rft.issue=2&rft.spage=326&rft.epage=336&rft.pages=326-336&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.476475&rft_dat=%3Cproquest_cross%3E2779345291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779345291&rft_id=info:pmid/36821202&rfr_iscdi=true