Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts

Alkali promoted mixed oxides were studied as catalysts for the oxidative dehydrogenation (ODH) and cracking of butane and propane. Olefin yields as high as 50% were obtained with Li/MgO-based catalysts. Magnesia-based catalysts showed higher activity for olefin production than catalysts based on zir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. A, General General, 2002-03, Vol.227 (1), p.287-297
Hauptverfasser: Leveles, László, Fuchs, Stefan, Seshan, Kulathuiyer, Lercher, Johannes A, Lefferts, Leon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue 1
container_start_page 287
container_title Applied catalysis. A, General
container_volume 227
creator Leveles, László
Fuchs, Stefan
Seshan, Kulathuiyer
Lercher, Johannes A
Lefferts, Leon
description Alkali promoted mixed oxides were studied as catalysts for the oxidative dehydrogenation (ODH) and cracking of butane and propane. Olefin yields as high as 50% were obtained with Li/MgO-based catalysts. Magnesia-based catalysts showed higher activity for olefin production than catalysts based on zirconia and niobia. Addition of Li to magnesia increases reaction rate normalized to the specific surface area about seven times and selectivity to olefins from 40 to 70%. Li is, therefore, an essential ingredient of the catalyst in order to create the active site. Cl-containing catalysts exhibit slightly higher olefin selectivity, but chloride-free catalysts show superior stability with time on stream. Alkanes show higher conversion rates than alkenes and this surprising result explains the high selectivity to olefins. It is suggested that Li +O − defect sites are the active site for activation of the alkane via hydrogen abstraction. Production of olefins via this oxidative dehydrogenation/cracking route may be an attractive alternative for steam-cracking.
doi_str_mv 10.1016/S0926-860X(01)00944-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27793415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X01009449</els_id><sourcerecordid>27793415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-5d24b0002dc0d0ed088a8dec64aee97d58d750cf6d71559f56bec1dce02c9f103</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKt_gpCLoofVye5md3MSEb-g0IMWvIU0mdVouqlJLPa_d_uBHj0NDL_35s0j5JjBBQNWXT6ByKusqeDlDNg5gCjLTOyQAWvqIiuamu-SwS-yTw5ifAeAvBR8QCbjb2tUsguk2ncLDNH6jvqWOvv6lqhyH6rDSJOn3mFru0h9D633ztJ58DOf0FDfu_QOKim3jCkekr1WuYhH2zkkk7vb55uHbDS-f7y5HmW65HnKuMnL6SqK0WAADTSNagzqqlSIoja8MTUH3VamZpyLlldT1MxohFyLlkExJKcb3z7I5xfGJGc2anSuD-2_oszrWhQl4z3IN6AOPsaArZwHO1NhKRnIVYlyXaJcNSSByXWJUvS6k-0BFbVybVCdtvFPXHAQUK24qw2H_bcLi0FGbbHTaGxAnaTx9p9LP5geiHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27793415</pqid></control><display><type>article</type><title>Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts</title><source>Access via ScienceDirect (Elsevier)</source><creator>Leveles, László ; Fuchs, Stefan ; Seshan, Kulathuiyer ; Lercher, Johannes A ; Lefferts, Leon</creator><creatorcontrib>Leveles, László ; Fuchs, Stefan ; Seshan, Kulathuiyer ; Lercher, Johannes A ; Lefferts, Leon</creatorcontrib><description>Alkali promoted mixed oxides were studied as catalysts for the oxidative dehydrogenation (ODH) and cracking of butane and propane. Olefin yields as high as 50% were obtained with Li/MgO-based catalysts. Magnesia-based catalysts showed higher activity for olefin production than catalysts based on zirconia and niobia. Addition of Li to magnesia increases reaction rate normalized to the specific surface area about seven times and selectivity to olefins from 40 to 70%. Li is, therefore, an essential ingredient of the catalyst in order to create the active site. Cl-containing catalysts exhibit slightly higher olefin selectivity, but chloride-free catalysts show superior stability with time on stream. Alkanes show higher conversion rates than alkenes and this surprising result explains the high selectivity to olefins. It is suggested that Li +O − defect sites are the active site for activation of the alkane via hydrogen abstraction. Production of olefins via this oxidative dehydrogenation/cracking route may be an attractive alternative for steam-cracking.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/S0926-860X(01)00944-9</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alkanes ; Catalysis ; Catalytic reactions ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Li/MgO ; Olefins ; Oxicracking ; Oxidative dehydrogenation ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Applied catalysis. A, General, 2002-03, Vol.227 (1), p.287-297</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-5d24b0002dc0d0ed088a8dec64aee97d58d750cf6d71559f56bec1dce02c9f103</citedby><cites>FETCH-LOGICAL-c452t-5d24b0002dc0d0ed088a8dec64aee97d58d750cf6d71559f56bec1dce02c9f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0926-860X(01)00944-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13509069$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leveles, László</creatorcontrib><creatorcontrib>Fuchs, Stefan</creatorcontrib><creatorcontrib>Seshan, Kulathuiyer</creatorcontrib><creatorcontrib>Lercher, Johannes A</creatorcontrib><creatorcontrib>Lefferts, Leon</creatorcontrib><title>Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts</title><title>Applied catalysis. A, General</title><description>Alkali promoted mixed oxides were studied as catalysts for the oxidative dehydrogenation (ODH) and cracking of butane and propane. Olefin yields as high as 50% were obtained with Li/MgO-based catalysts. Magnesia-based catalysts showed higher activity for olefin production than catalysts based on zirconia and niobia. Addition of Li to magnesia increases reaction rate normalized to the specific surface area about seven times and selectivity to olefins from 40 to 70%. Li is, therefore, an essential ingredient of the catalyst in order to create the active site. Cl-containing catalysts exhibit slightly higher olefin selectivity, but chloride-free catalysts show superior stability with time on stream. Alkanes show higher conversion rates than alkenes and this surprising result explains the high selectivity to olefins. It is suggested that Li +O − defect sites are the active site for activation of the alkane via hydrogen abstraction. Production of olefins via this oxidative dehydrogenation/cracking route may be an attractive alternative for steam-cracking.</description><subject>Alkanes</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Li/MgO</subject><subject>Olefins</subject><subject>Oxicracking</subject><subject>Oxidative dehydrogenation</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKt_gpCLoofVye5md3MSEb-g0IMWvIU0mdVouqlJLPa_d_uBHj0NDL_35s0j5JjBBQNWXT6ByKusqeDlDNg5gCjLTOyQAWvqIiuamu-SwS-yTw5ifAeAvBR8QCbjb2tUsguk2ncLDNH6jvqWOvv6lqhyH6rDSJOn3mFru0h9D633ztJ58DOf0FDfu_QOKim3jCkekr1WuYhH2zkkk7vb55uHbDS-f7y5HmW65HnKuMnL6SqK0WAADTSNagzqqlSIoja8MTUH3VamZpyLlldT1MxohFyLlkExJKcb3z7I5xfGJGc2anSuD-2_oszrWhQl4z3IN6AOPsaArZwHO1NhKRnIVYlyXaJcNSSByXWJUvS6k-0BFbVybVCdtvFPXHAQUK24qw2H_bcLi0FGbbHTaGxAnaTx9p9LP5geiHo</recordid><startdate>20020308</startdate><enddate>20020308</enddate><creator>Leveles, László</creator><creator>Fuchs, Stefan</creator><creator>Seshan, Kulathuiyer</creator><creator>Lercher, Johannes A</creator><creator>Lefferts, Leon</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020308</creationdate><title>Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts</title><author>Leveles, László ; Fuchs, Stefan ; Seshan, Kulathuiyer ; Lercher, Johannes A ; Lefferts, Leon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-5d24b0002dc0d0ed088a8dec64aee97d58d750cf6d71559f56bec1dce02c9f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Alkanes</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Li/MgO</topic><topic>Olefins</topic><topic>Oxicracking</topic><topic>Oxidative dehydrogenation</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leveles, László</creatorcontrib><creatorcontrib>Fuchs, Stefan</creatorcontrib><creatorcontrib>Seshan, Kulathuiyer</creatorcontrib><creatorcontrib>Lercher, Johannes A</creatorcontrib><creatorcontrib>Lefferts, Leon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leveles, László</au><au>Fuchs, Stefan</au><au>Seshan, Kulathuiyer</au><au>Lercher, Johannes A</au><au>Lefferts, Leon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2002-03-08</date><risdate>2002</risdate><volume>227</volume><issue>1</issue><spage>287</spage><epage>297</epage><pages>287-297</pages><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>Alkali promoted mixed oxides were studied as catalysts for the oxidative dehydrogenation (ODH) and cracking of butane and propane. Olefin yields as high as 50% were obtained with Li/MgO-based catalysts. Magnesia-based catalysts showed higher activity for olefin production than catalysts based on zirconia and niobia. Addition of Li to magnesia increases reaction rate normalized to the specific surface area about seven times and selectivity to olefins from 40 to 70%. Li is, therefore, an essential ingredient of the catalyst in order to create the active site. Cl-containing catalysts exhibit slightly higher olefin selectivity, but chloride-free catalysts show superior stability with time on stream. Alkanes show higher conversion rates than alkenes and this surprising result explains the high selectivity to olefins. It is suggested that Li +O − defect sites are the active site for activation of the alkane via hydrogen abstraction. Production of olefins via this oxidative dehydrogenation/cracking route may be an attractive alternative for steam-cracking.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0926-860X(01)00944-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-860X
ispartof Applied catalysis. A, General, 2002-03, Vol.227 (1), p.287-297
issn 0926-860X
1873-3875
language eng
recordid cdi_proquest_miscellaneous_27793415
source Access via ScienceDirect (Elsevier)
subjects Alkanes
Catalysis
Catalytic reactions
Chemistry
Exact sciences and technology
General and physical chemistry
Li/MgO
Olefins
Oxicracking
Oxidative dehydrogenation
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20conversion%20of%20light%20alkanes%20to%20olefins%20over%20alkali%20promoted%20oxide%20catalysts&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Leveles,%20L%C3%A1szl%C3%B3&rft.date=2002-03-08&rft.volume=227&rft.issue=1&rft.spage=287&rft.epage=297&rft.pages=287-297&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/S0926-860X(01)00944-9&rft_dat=%3Cproquest_cross%3E27793415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27793415&rft_id=info:pmid/&rft_els_id=S0926860X01009449&rfr_iscdi=true