The quantum twisting microscope

The invention of scanning probe microscopy revolutionized the way electronic phenomena are visualized 1 . Whereas present-day probes can access a variety of electronic properties at a single location in space 2 , a scanning microscope that can directly probe the quantum mechanical existence of an el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2023-02, Vol.614 (7949), p.682-687
Hauptverfasser: Inbar, A., Birkbeck, J., Xiao, J., Taniguchi, T., Watanabe, K., Yan, B., Oreg, Y., Stern, Ady, Berg, E., Ilani, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 687
container_issue 7949
container_start_page 682
container_title Nature (London)
container_volume 614
creator Inbar, A.
Birkbeck, J.
Xiao, J.
Taniguchi, T.
Watanabe, K.
Yan, B.
Oreg, Y.
Stern, Ady
Berg, E.
Ilani, S.
description The invention of scanning probe microscopy revolutionized the way electronic phenomena are visualized 1 . Whereas present-day probes can access a variety of electronic properties at a single location in space 2 , a scanning microscope that can directly probe the quantum mechanical existence of an electron at several locations would provide direct access to key quantum properties of electronic systems, so far unreachable. Here, we demonstrate a conceptually new type of scanning probe microscope—the quantum twisting microscope (QTM)—capable of performing local interference experiments at its tip. The QTM is based on a unique van der Waals tip, allowing the creation of pristine two-dimensional junctions, which provide a multitude of coherently interfering paths for an electron to tunnel into a sample. With the addition of a continuously scanned twist angle between the tip and sample, this microscope probes electrons along a line in momentum space similar to how a scanning tunnelling microscope probes electrons along a line in real space. Through a series of experiments, we demonstrate room-temperature quantum coherence at the tip, study the twist angle evolution of twisted bilayer graphene, directly image the energy bands of monolayer and twisted bilayer graphene and, finally, apply large local pressures while visualizing the gradual flattening of the low-energy band of twisted bilayer graphene. The QTM opens the way for new classes of experiments on quantum materials. A quantum twisting microscope based on a unique van der Waals tip and capable of performing local interference experiments opens the way for new classes of experiments on quantum materials.
doi_str_mv 10.1038/s41586-022-05685-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2779340591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779945328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4013e82e0a0a8dc2f03ec9c1e79878d1e057a8f301b2d170753bfba17c56c1173</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxigEguL4c4fsTOiii-pEkuZLcdxSqomaeNEKP-etCkgMTDdcM-9d_cQcolwh8D1fRAodUSBMQoy0pJ2R2SMQkVURFodkzEA0xQ0j0bkLIQVAEhU4pSMeKSR61iOyfXiw0-3rS2btpg2n3lo8nI5LXJXV8FVG39OTjK7Dv7iUCfk_elxMXuh87fn19nDnDquZEMFIPeaebBgdepYBty72KFXsVY6RQ9SWZ1xwISlqEBJnmSJReVk5BAVn5DbIXdTV9vWh8YUeXB-vbalr9pgmFIxFyBj7NGbP-iqauuyv25PxUJypnuKDdTuk1D7zGzqvLB1ZxDMTp8Z9Jlen9nrM10_dHWIbpPCpz8j3756gA9A6Fvl0te_u_-J_QIRAHkZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779945328</pqid></control><display><type>article</type><title>The quantum twisting microscope</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Inbar, A. ; Birkbeck, J. ; Xiao, J. ; Taniguchi, T. ; Watanabe, K. ; Yan, B. ; Oreg, Y. ; Stern, Ady ; Berg, E. ; Ilani, S.</creator><creatorcontrib>Inbar, A. ; Birkbeck, J. ; Xiao, J. ; Taniguchi, T. ; Watanabe, K. ; Yan, B. ; Oreg, Y. ; Stern, Ady ; Berg, E. ; Ilani, S.</creatorcontrib><description>The invention of scanning probe microscopy revolutionized the way electronic phenomena are visualized 1 . Whereas present-day probes can access a variety of electronic properties at a single location in space 2 , a scanning microscope that can directly probe the quantum mechanical existence of an electron at several locations would provide direct access to key quantum properties of electronic systems, so far unreachable. Here, we demonstrate a conceptually new type of scanning probe microscope—the quantum twisting microscope (QTM)—capable of performing local interference experiments at its tip. The QTM is based on a unique van der Waals tip, allowing the creation of pristine two-dimensional junctions, which provide a multitude of coherently interfering paths for an electron to tunnel into a sample. With the addition of a continuously scanned twist angle between the tip and sample, this microscope probes electrons along a line in momentum space similar to how a scanning tunnelling microscope probes electrons along a line in real space. Through a series of experiments, we demonstrate room-temperature quantum coherence at the tip, study the twist angle evolution of twisted bilayer graphene, directly image the energy bands of monolayer and twisted bilayer graphene and, finally, apply large local pressures while visualizing the gradual flattening of the low-energy band of twisted bilayer graphene. The QTM opens the way for new classes of experiments on quantum materials. A quantum twisting microscope based on a unique van der Waals tip and capable of performing local interference experiments opens the way for new classes of experiments on quantum materials.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05685-y</identifier><identifier>PMID: 36813895</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/995 ; 639/766/930/328/968 ; Bilayers ; Coherence ; Electronic systems ; Electrons ; Energy ; Energy bands ; Experiments ; Graphene ; Graphite ; Humanities and Social Sciences ; Interfaces ; Local interference ; multidisciplinary ; Probes ; Quantum mechanics ; Quantum phenomena ; Room temperature ; Scanning probe microscopes ; Scanning probe microscopy ; Science ; Science (multidisciplinary) ; Twisting</subject><ispartof>Nature (London), 2023-02, Vol.614 (7949), p.682-687</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Feb 23, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4013e82e0a0a8dc2f03ec9c1e79878d1e057a8f301b2d170753bfba17c56c1173</citedby><cites>FETCH-LOGICAL-c375t-4013e82e0a0a8dc2f03ec9c1e79878d1e057a8f301b2d170753bfba17c56c1173</cites><orcidid>0000-0001-8753-8468 ; 0000-0003-3701-8119 ; 0000-0001-8956-3384 ; 0000-0001-8589-7723 ; 0000-0002-1467-3105 ; 0000-0002-9493-268X ; 0000-0003-2164-5839 ; 0000-0002-6916-4375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36813895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inbar, A.</creatorcontrib><creatorcontrib>Birkbeck, J.</creatorcontrib><creatorcontrib>Xiao, J.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Yan, B.</creatorcontrib><creatorcontrib>Oreg, Y.</creatorcontrib><creatorcontrib>Stern, Ady</creatorcontrib><creatorcontrib>Berg, E.</creatorcontrib><creatorcontrib>Ilani, S.</creatorcontrib><title>The quantum twisting microscope</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The invention of scanning probe microscopy revolutionized the way electronic phenomena are visualized 1 . Whereas present-day probes can access a variety of electronic properties at a single location in space 2 , a scanning microscope that can directly probe the quantum mechanical existence of an electron at several locations would provide direct access to key quantum properties of electronic systems, so far unreachable. Here, we demonstrate a conceptually new type of scanning probe microscope—the quantum twisting microscope (QTM)—capable of performing local interference experiments at its tip. The QTM is based on a unique van der Waals tip, allowing the creation of pristine two-dimensional junctions, which provide a multitude of coherently interfering paths for an electron to tunnel into a sample. With the addition of a continuously scanned twist angle between the tip and sample, this microscope probes electrons along a line in momentum space similar to how a scanning tunnelling microscope probes electrons along a line in real space. Through a series of experiments, we demonstrate room-temperature quantum coherence at the tip, study the twist angle evolution of twisted bilayer graphene, directly image the energy bands of monolayer and twisted bilayer graphene and, finally, apply large local pressures while visualizing the gradual flattening of the low-energy band of twisted bilayer graphene. The QTM opens the way for new classes of experiments on quantum materials. A quantum twisting microscope based on a unique van der Waals tip and capable of performing local interference experiments opens the way for new classes of experiments on quantum materials.</description><subject>639/766/119/995</subject><subject>639/766/930/328/968</subject><subject>Bilayers</subject><subject>Coherence</subject><subject>Electronic systems</subject><subject>Electrons</subject><subject>Energy</subject><subject>Energy bands</subject><subject>Experiments</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Local interference</subject><subject>multidisciplinary</subject><subject>Probes</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>Room temperature</subject><subject>Scanning probe microscopes</subject><subject>Scanning probe microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Twisting</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxigEguL4c4fsTOiii-pEkuZLcdxSqomaeNEKP-etCkgMTDdcM-9d_cQcolwh8D1fRAodUSBMQoy0pJ2R2SMQkVURFodkzEA0xQ0j0bkLIQVAEhU4pSMeKSR61iOyfXiw0-3rS2btpg2n3lo8nI5LXJXV8FVG39OTjK7Dv7iUCfk_elxMXuh87fn19nDnDquZEMFIPeaebBgdepYBty72KFXsVY6RQ9SWZ1xwISlqEBJnmSJReVk5BAVn5DbIXdTV9vWh8YUeXB-vbalr9pgmFIxFyBj7NGbP-iqauuyv25PxUJypnuKDdTuk1D7zGzqvLB1ZxDMTp8Z9Jlen9nrM10_dHWIbpPCpz8j3756gA9A6Fvl0te_u_-J_QIRAHkZ</recordid><startdate>20230223</startdate><enddate>20230223</enddate><creator>Inbar, A.</creator><creator>Birkbeck, J.</creator><creator>Xiao, J.</creator><creator>Taniguchi, T.</creator><creator>Watanabe, K.</creator><creator>Yan, B.</creator><creator>Oreg, Y.</creator><creator>Stern, Ady</creator><creator>Berg, E.</creator><creator>Ilani, S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8753-8468</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-8956-3384</orcidid><orcidid>https://orcid.org/0000-0001-8589-7723</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-9493-268X</orcidid><orcidid>https://orcid.org/0000-0003-2164-5839</orcidid><orcidid>https://orcid.org/0000-0002-6916-4375</orcidid></search><sort><creationdate>20230223</creationdate><title>The quantum twisting microscope</title><author>Inbar, A. ; Birkbeck, J. ; Xiao, J. ; Taniguchi, T. ; Watanabe, K. ; Yan, B. ; Oreg, Y. ; Stern, Ady ; Berg, E. ; Ilani, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4013e82e0a0a8dc2f03ec9c1e79878d1e057a8f301b2d170753bfba17c56c1173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/119/995</topic><topic>639/766/930/328/968</topic><topic>Bilayers</topic><topic>Coherence</topic><topic>Electronic systems</topic><topic>Electrons</topic><topic>Energy</topic><topic>Energy bands</topic><topic>Experiments</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Local interference</topic><topic>multidisciplinary</topic><topic>Probes</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>Room temperature</topic><topic>Scanning probe microscopes</topic><topic>Scanning probe microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inbar, A.</creatorcontrib><creatorcontrib>Birkbeck, J.</creatorcontrib><creatorcontrib>Xiao, J.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Yan, B.</creatorcontrib><creatorcontrib>Oreg, Y.</creatorcontrib><creatorcontrib>Stern, Ady</creatorcontrib><creatorcontrib>Berg, E.</creatorcontrib><creatorcontrib>Ilani, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inbar, A.</au><au>Birkbeck, J.</au><au>Xiao, J.</au><au>Taniguchi, T.</au><au>Watanabe, K.</au><au>Yan, B.</au><au>Oreg, Y.</au><au>Stern, Ady</au><au>Berg, E.</au><au>Ilani, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The quantum twisting microscope</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-02-23</date><risdate>2023</risdate><volume>614</volume><issue>7949</issue><spage>682</spage><epage>687</epage><pages>682-687</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The invention of scanning probe microscopy revolutionized the way electronic phenomena are visualized 1 . Whereas present-day probes can access a variety of electronic properties at a single location in space 2 , a scanning microscope that can directly probe the quantum mechanical existence of an electron at several locations would provide direct access to key quantum properties of electronic systems, so far unreachable. Here, we demonstrate a conceptually new type of scanning probe microscope—the quantum twisting microscope (QTM)—capable of performing local interference experiments at its tip. The QTM is based on a unique van der Waals tip, allowing the creation of pristine two-dimensional junctions, which provide a multitude of coherently interfering paths for an electron to tunnel into a sample. With the addition of a continuously scanned twist angle between the tip and sample, this microscope probes electrons along a line in momentum space similar to how a scanning tunnelling microscope probes electrons along a line in real space. Through a series of experiments, we demonstrate room-temperature quantum coherence at the tip, study the twist angle evolution of twisted bilayer graphene, directly image the energy bands of monolayer and twisted bilayer graphene and, finally, apply large local pressures while visualizing the gradual flattening of the low-energy band of twisted bilayer graphene. The QTM opens the way for new classes of experiments on quantum materials. A quantum twisting microscope based on a unique van der Waals tip and capable of performing local interference experiments opens the way for new classes of experiments on quantum materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36813895</pmid><doi>10.1038/s41586-022-05685-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8753-8468</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-8956-3384</orcidid><orcidid>https://orcid.org/0000-0001-8589-7723</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-9493-268X</orcidid><orcidid>https://orcid.org/0000-0003-2164-5839</orcidid><orcidid>https://orcid.org/0000-0002-6916-4375</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-02, Vol.614 (7949), p.682-687
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2779340591
source Nature; Alma/SFX Local Collection
subjects 639/766/119/995
639/766/930/328/968
Bilayers
Coherence
Electronic systems
Electrons
Energy
Energy bands
Experiments
Graphene
Graphite
Humanities and Social Sciences
Interfaces
Local interference
multidisciplinary
Probes
Quantum mechanics
Quantum phenomena
Room temperature
Scanning probe microscopes
Scanning probe microscopy
Science
Science (multidisciplinary)
Twisting
title The quantum twisting microscope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20quantum%20twisting%20microscope&rft.jtitle=Nature%20(London)&rft.au=Inbar,%20A.&rft.date=2023-02-23&rft.volume=614&rft.issue=7949&rft.spage=682&rft.epage=687&rft.pages=682-687&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05685-y&rft_dat=%3Cproquest_cross%3E2779945328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779945328&rft_id=info:pmid/36813895&rfr_iscdi=true