Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V

Many critical engineering components are routinely subjected to cyclic multiaxial stress states, which may include non-proportional loading and multidimensional mean stresses. Existing multiaxial fatigue models are examined to determine their suitability at estimating fatigue damage in Ti-6Al-4V und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering materials and technology 2002-04, Vol.124 (2), p.229-237
Hauptverfasser: Kallmeyer, Alan R, Krgo, Ahmo, Kurath, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 2
container_start_page 229
container_title Journal of engineering materials and technology
container_volume 124
creator Kallmeyer, Alan R
Krgo, Ahmo
Kurath, Peter
description Many critical engineering components are routinely subjected to cyclic multiaxial stress states, which may include non-proportional loading and multidimensional mean stresses. Existing multiaxial fatigue models are examined to determine their suitability at estimating fatigue damage in Ti-6Al-4V under complex, multiaxial loading, with an emphasis on long-life conditions. Both proportional and non-proportional strain-controlled tension/torsion experiments were conducted on solid specimens. Several multiaxial fatigue damage parameters are evaluated based on their ability to correlate the biaxial fatigue data and uniaxial fatigue data with tensile mean stresses (R>−1) to a fully-reversed (R=−1) uniaxial baseline. Both equivalent stress-based models and critical plane approaches are evaluated. Only one equivalent stress model and two critical plane models showed promise for the range of loadings and material considered.
doi_str_mv 10.1115/1.1446075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27789942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27789942</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-57411a637e748a2c96c17103cd0d4fdae15b63002a0b5976000a522e9d139523</originalsourceid><addsrcrecordid>eNpF0MtLAzEQBvAgCtbHwbOXvSh42DqTx2ZzLOILKnooXsO4m9WUtKnJruh_b2sLngaG33wwH2NnCGNEVNc4Rikr0GqPjVDxuqzr2uyzEYCRpeS1OWRHOc8BUAilR2x6-0VhoN7HZRG74mkIvadvT6G4Wy_fB1dMfeeKl-Ra3_ypJ9d_xDaG-O5dLrqYipkvq0ko5esJO-goZHe6m8dsdnc7u3kop8_3jzeTaUlCV32ptESkSminZU28MVWDGkE0LbSya8mheqsEACd4U0ZXAECKc2daFEZxccwut7GrFD8Hl3u78LlxIdDSxSFbrnVtjNzAqy1sUsw5uc6ukl9Q-rEIdlOXRbura20vdqGUGwpdomXj8_-BqFAC37jzraO8cHYeh7Rcv2rXIQaU-AWIYXAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27789942</pqid></control><display><type>article</type><title>Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V</title><source>ASME Transactions Journals (Current)</source><creator>Kallmeyer, Alan R ; Krgo, Ahmo ; Kurath, Peter</creator><creatorcontrib>Kallmeyer, Alan R ; Krgo, Ahmo ; Kurath, Peter</creatorcontrib><description>Many critical engineering components are routinely subjected to cyclic multiaxial stress states, which may include non-proportional loading and multidimensional mean stresses. Existing multiaxial fatigue models are examined to determine their suitability at estimating fatigue damage in Ti-6Al-4V under complex, multiaxial loading, with an emphasis on long-life conditions. Both proportional and non-proportional strain-controlled tension/torsion experiments were conducted on solid specimens. Several multiaxial fatigue damage parameters are evaluated based on their ability to correlate the biaxial fatigue data and uniaxial fatigue data with tensile mean stresses (R&gt;−1) to a fully-reversed (R=−1) uniaxial baseline. Both equivalent stress-based models and critical plane approaches are evaluated. Only one equivalent stress model and two critical plane models showed promise for the range of loadings and material considered.</description><identifier>ISSN: 0094-4289</identifier><identifier>EISSN: 1528-8889</identifier><identifier>DOI: 10.1115/1.1446075</identifier><identifier>CODEN: JEMTA8</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Fatigue ; Fatigue, brittleness, fracture, and cracks ; Mechanical and acoustical properties of condensed matter ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical properties of solids ; Metals. Metallurgy ; Physics</subject><ispartof>Journal of engineering materials and technology, 2002-04, Vol.124 (2), p.229-237</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-57411a637e748a2c96c17103cd0d4fdae15b63002a0b5976000a522e9d139523</citedby><cites>FETCH-LOGICAL-a376t-57411a637e748a2c96c17103cd0d4fdae15b63002a0b5976000a522e9d139523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13614025$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kallmeyer, Alan R</creatorcontrib><creatorcontrib>Krgo, Ahmo</creatorcontrib><creatorcontrib>Kurath, Peter</creatorcontrib><title>Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V</title><title>Journal of engineering materials and technology</title><addtitle>J. Eng. Mater. Technol</addtitle><description>Many critical engineering components are routinely subjected to cyclic multiaxial stress states, which may include non-proportional loading and multidimensional mean stresses. Existing multiaxial fatigue models are examined to determine their suitability at estimating fatigue damage in Ti-6Al-4V under complex, multiaxial loading, with an emphasis on long-life conditions. Both proportional and non-proportional strain-controlled tension/torsion experiments were conducted on solid specimens. Several multiaxial fatigue damage parameters are evaluated based on their ability to correlate the biaxial fatigue data and uniaxial fatigue data with tensile mean stresses (R&gt;−1) to a fully-reversed (R=−1) uniaxial baseline. Both equivalent stress-based models and critical plane approaches are evaluated. Only one equivalent stress model and two critical plane models showed promise for the range of loadings and material considered.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><issn>0094-4289</issn><issn>1528-8889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpF0MtLAzEQBvAgCtbHwbOXvSh42DqTx2ZzLOILKnooXsO4m9WUtKnJruh_b2sLngaG33wwH2NnCGNEVNc4Rikr0GqPjVDxuqzr2uyzEYCRpeS1OWRHOc8BUAilR2x6-0VhoN7HZRG74mkIvadvT6G4Wy_fB1dMfeeKl-Ra3_ypJ9d_xDaG-O5dLrqYipkvq0ko5esJO-goZHe6m8dsdnc7u3kop8_3jzeTaUlCV32ptESkSminZU28MVWDGkE0LbSya8mheqsEACd4U0ZXAECKc2daFEZxccwut7GrFD8Hl3u78LlxIdDSxSFbrnVtjNzAqy1sUsw5uc6ukl9Q-rEIdlOXRbura20vdqGUGwpdomXj8_-BqFAC37jzraO8cHYeh7Rcv2rXIQaU-AWIYXAI</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Kallmeyer, Alan R</creator><creator>Krgo, Ahmo</creator><creator>Kurath, Peter</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20020401</creationdate><title>Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V</title><author>Kallmeyer, Alan R ; Krgo, Ahmo ; Kurath, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-57411a637e748a2c96c17103cd0d4fdae15b63002a0b5976000a522e9d139523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kallmeyer, Alan R</creatorcontrib><creatorcontrib>Krgo, Ahmo</creatorcontrib><creatorcontrib>Kurath, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of engineering materials and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kallmeyer, Alan R</au><au>Krgo, Ahmo</au><au>Kurath, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V</atitle><jtitle>Journal of engineering materials and technology</jtitle><stitle>J. Eng. Mater. Technol</stitle><date>2002-04-01</date><risdate>2002</risdate><volume>124</volume><issue>2</issue><spage>229</spage><epage>237</epage><pages>229-237</pages><issn>0094-4289</issn><eissn>1528-8889</eissn><coden>JEMTA8</coden><abstract>Many critical engineering components are routinely subjected to cyclic multiaxial stress states, which may include non-proportional loading and multidimensional mean stresses. Existing multiaxial fatigue models are examined to determine their suitability at estimating fatigue damage in Ti-6Al-4V under complex, multiaxial loading, with an emphasis on long-life conditions. Both proportional and non-proportional strain-controlled tension/torsion experiments were conducted on solid specimens. Several multiaxial fatigue damage parameters are evaluated based on their ability to correlate the biaxial fatigue data and uniaxial fatigue data with tensile mean stresses (R&gt;−1) to a fully-reversed (R=−1) uniaxial baseline. Both equivalent stress-based models and critical plane approaches are evaluated. Only one equivalent stress model and two critical plane models showed promise for the range of loadings and material considered.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.1446075</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-4289
ispartof Journal of engineering materials and technology, 2002-04, Vol.124 (2), p.229-237
issn 0094-4289
1528-8889
language eng
recordid cdi_proquest_miscellaneous_27789942
source ASME Transactions Journals (Current)
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Fatigue
Fatigue, brittleness, fracture, and cracks
Mechanical and acoustical properties of condensed matter
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanical properties of solids
Metals. Metallurgy
Physics
title Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Multiaxial%20Fatigue%20Life%20Prediction%20Methodologies%20for%20Ti-6Al-4V&rft.jtitle=Journal%20of%20engineering%20materials%20and%20technology&rft.au=Kallmeyer,%20Alan%20R&rft.date=2002-04-01&rft.volume=124&rft.issue=2&rft.spage=229&rft.epage=237&rft.pages=229-237&rft.issn=0094-4289&rft.eissn=1528-8889&rft.coden=JEMTA8&rft_id=info:doi/10.1115/1.1446075&rft_dat=%3Cproquest_cross%3E27789942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27789942&rft_id=info:pmid/&rfr_iscdi=true