Mechanism of Delocalization-Enhanced Exciton Transport in Disordered Organic Semiconductors
Large exciton diffusion lengths generally improve the performance of organic semiconductor devices, because they enable energy to be transported farther during the exciton lifetime. However, the physics of exciton motion in disordered organic materials is not fully understood, and modeling the trans...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-03, Vol.14 (8), p.2155-2162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2162 |
---|---|
container_issue | 8 |
container_start_page | 2155 |
container_title | The journal of physical chemistry letters |
container_volume | 14 |
creator | Balzer, Daniel Kassal, Ivan |
description | Large exciton diffusion lengths generally improve the performance of organic semiconductor devices, because they enable energy to be transported farther during the exciton lifetime. However, the physics of exciton motion in disordered organic materials is not fully understood, and modeling the transport of quantum-mechanically delocalized excitons in disordered organic semiconductors is a computational challenge. Here, we describe delocalized kinetic Monte Carlo (dKMC), the first model of three-dimensional exciton transport in organic semiconductors that includes delocalization, disorder, and polaron formation. We find that delocalization can dramatically increase exciton transport; for example, delocalization across less than two molecules in each direction can increase the exciton diffusion coefficient by over an order of magnitude. The mechanism for the enhancement is 2-fold: delocalization enables excitons to hop both more frequently and further in each hop. We also quantify the effect of transient delocalization (short-lived periods where excitons become highly delocalized) and show that it depends strongly upon the disorder and transition dipole moments. |
doi_str_mv | 10.1021/acs.jpclett.2c03886 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2778979069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778979069</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-d2dfe9c87b1ad4e8dd26a6c5b2625963cf78d441871eaed1cb6e01b2d7ec5b213</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUgoSzYptvOws0RteUhFXVBWLCLHnoCrxC52IgFfj0sDYsXKI82515qD0DnBU4IpuRLSTzdb2UDXTanECef5ARqTIuUxIzw7_DOP0In3G4zzAnN2jEZJzjHNeDJGzw8gX4XRvo1sHc2hsVI0-lN02pp4YcJKgooW71J31kRrJ4zfWtdF2kRz7a1T4MJ-5V5Ch4weodXSGtXLzjp_io5q0Xg4G94JerpZrGd38XJ1ez-7XsYiSbMuVlTVUEjOKiJUClwpmotcZhXNaVbkiawZV2lKOCMgQBFZ5YBJRRWDHUSSCbrc926dfevBd2WrvYSmEQZs70vKGC9YEa4PaLJHpbPeO6jLrdOtcB8lweXOahmsloPVcrAaUhfDB33VgvrN_GgMwNUe-E7b3plw77-VX2sWiJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778979069</pqid></control><display><type>article</type><title>Mechanism of Delocalization-Enhanced Exciton Transport in Disordered Organic Semiconductors</title><source>ACS Publications</source><creator>Balzer, Daniel ; Kassal, Ivan</creator><creatorcontrib>Balzer, Daniel ; Kassal, Ivan</creatorcontrib><description>Large exciton diffusion lengths generally improve the performance of organic semiconductor devices, because they enable energy to be transported farther during the exciton lifetime. However, the physics of exciton motion in disordered organic materials is not fully understood, and modeling the transport of quantum-mechanically delocalized excitons in disordered organic semiconductors is a computational challenge. Here, we describe delocalized kinetic Monte Carlo (dKMC), the first model of three-dimensional exciton transport in organic semiconductors that includes delocalization, disorder, and polaron formation. We find that delocalization can dramatically increase exciton transport; for example, delocalization across less than two molecules in each direction can increase the exciton diffusion coefficient by over an order of magnitude. The mechanism for the enhancement is 2-fold: delocalization enables excitons to hop both more frequently and further in each hop. We also quantify the effect of transient delocalization (short-lived periods where excitons become highly delocalized) and show that it depends strongly upon the disorder and transition dipole moments.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c03886</identifier><identifier>PMID: 36802583</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2023-03, Vol.14 (8), p.2155-2162</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-d2dfe9c87b1ad4e8dd26a6c5b2625963cf78d441871eaed1cb6e01b2d7ec5b213</citedby><cites>FETCH-LOGICAL-a345t-d2dfe9c87b1ad4e8dd26a6c5b2625963cf78d441871eaed1cb6e01b2d7ec5b213</cites><orcidid>0000-0002-8376-0819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c03886$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c03886$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36802583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balzer, Daniel</creatorcontrib><creatorcontrib>Kassal, Ivan</creatorcontrib><title>Mechanism of Delocalization-Enhanced Exciton Transport in Disordered Organic Semiconductors</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Large exciton diffusion lengths generally improve the performance of organic semiconductor devices, because they enable energy to be transported farther during the exciton lifetime. However, the physics of exciton motion in disordered organic materials is not fully understood, and modeling the transport of quantum-mechanically delocalized excitons in disordered organic semiconductors is a computational challenge. Here, we describe delocalized kinetic Monte Carlo (dKMC), the first model of three-dimensional exciton transport in organic semiconductors that includes delocalization, disorder, and polaron formation. We find that delocalization can dramatically increase exciton transport; for example, delocalization across less than two molecules in each direction can increase the exciton diffusion coefficient by over an order of magnitude. The mechanism for the enhancement is 2-fold: delocalization enables excitons to hop both more frequently and further in each hop. We also quantify the effect of transient delocalization (short-lived periods where excitons become highly delocalized) and show that it depends strongly upon the disorder and transition dipole moments.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBUgoSzYptvOws0RteUhFXVBWLCLHnoCrxC52IgFfj0sDYsXKI82515qD0DnBU4IpuRLSTzdb2UDXTanECef5ARqTIuUxIzw7_DOP0In3G4zzAnN2jEZJzjHNeDJGzw8gX4XRvo1sHc2hsVI0-lN02pp4YcJKgooW71J31kRrJ4zfWtdF2kRz7a1T4MJ-5V5Ch4weodXSGtXLzjp_io5q0Xg4G94JerpZrGd38XJ1ez-7XsYiSbMuVlTVUEjOKiJUClwpmotcZhXNaVbkiawZV2lKOCMgQBFZ5YBJRRWDHUSSCbrc926dfevBd2WrvYSmEQZs70vKGC9YEa4PaLJHpbPeO6jLrdOtcB8lweXOahmsloPVcrAaUhfDB33VgvrN_GgMwNUe-E7b3plw77-VX2sWiJw</recordid><startdate>20230302</startdate><enddate>20230302</enddate><creator>Balzer, Daniel</creator><creator>Kassal, Ivan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8376-0819</orcidid></search><sort><creationdate>20230302</creationdate><title>Mechanism of Delocalization-Enhanced Exciton Transport in Disordered Organic Semiconductors</title><author>Balzer, Daniel ; Kassal, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-d2dfe9c87b1ad4e8dd26a6c5b2625963cf78d441871eaed1cb6e01b2d7ec5b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balzer, Daniel</creatorcontrib><creatorcontrib>Kassal, Ivan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balzer, Daniel</au><au>Kassal, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Delocalization-Enhanced Exciton Transport in Disordered Organic Semiconductors</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-03-02</date><risdate>2023</risdate><volume>14</volume><issue>8</issue><spage>2155</spage><epage>2162</epage><pages>2155-2162</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Large exciton diffusion lengths generally improve the performance of organic semiconductor devices, because they enable energy to be transported farther during the exciton lifetime. However, the physics of exciton motion in disordered organic materials is not fully understood, and modeling the transport of quantum-mechanically delocalized excitons in disordered organic semiconductors is a computational challenge. Here, we describe delocalized kinetic Monte Carlo (dKMC), the first model of three-dimensional exciton transport in organic semiconductors that includes delocalization, disorder, and polaron formation. We find that delocalization can dramatically increase exciton transport; for example, delocalization across less than two molecules in each direction can increase the exciton diffusion coefficient by over an order of magnitude. The mechanism for the enhancement is 2-fold: delocalization enables excitons to hop both more frequently and further in each hop. We also quantify the effect of transient delocalization (short-lived periods where excitons become highly delocalized) and show that it depends strongly upon the disorder and transition dipole moments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36802583</pmid><doi>10.1021/acs.jpclett.2c03886</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8376-0819</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2023-03, Vol.14 (8), p.2155-2162 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2778979069 |
source | ACS Publications |
subjects | Physical Insights into Materials and Molecular Properties |
title | Mechanism of Delocalization-Enhanced Exciton Transport in Disordered Organic Semiconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Delocalization-Enhanced%20Exciton%20Transport%20in%20Disordered%20Organic%20Semiconductors&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Balzer,%20Daniel&rft.date=2023-03-02&rft.volume=14&rft.issue=8&rft.spage=2155&rft.epage=2162&rft.pages=2155-2162&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c03886&rft_dat=%3Cproquest_cross%3E2778979069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778979069&rft_id=info:pmid/36802583&rfr_iscdi=true |