Ag Aerogel-Supported Single-Atom Hg Nanozyme Enables Efficient SERS Monitoring of Enhanced Oxidase-Like Catalysis
In this work, three-dimensional (3D) Ag aerogel-supported Hg single-atom catalysts (SACs) were explored as an efficient surface-enhanced Raman scattering (SERS) substrate to monitor the enhanced oxidase-like reaction. The influence of the concentrations of Hg2+ to prepare 3D Hg/Ag aerogel networks o...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2023-03, Vol.95 (9), p.4335-4343 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4343 |
---|---|
container_issue | 9 |
container_start_page | 4335 |
container_title | Analytical chemistry (Washington) |
container_volume | 95 |
creator | Liu, Di Gao, Huimin Jiang, Wenji Yan, Su Liu, Hao Chen, Junjie Wen, Sisi Zhang, Wei Wang, Xu Zhao, Bing Song, Wei |
description | In this work, three-dimensional (3D) Ag aerogel-supported Hg single-atom catalysts (SACs) were explored as an efficient surface-enhanced Raman scattering (SERS) substrate to monitor the enhanced oxidase-like reaction. The influence of the concentrations of Hg2+ to prepare 3D Hg/Ag aerogel networks on their SERS properties to monitor the oxidase-like reaction has been investigated, and a specific enhancement with an optimized addition of Hg2+ has been achieved. The formation of Ag-supported Hg SACs with the optimized Hg2+ addition was identified from a high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image and X-ray photoelectron spectroscopy (XPS) measurement at an atomic level. This is the first discovery of Hg SACs for enzyme-like reaction applications inferred by SERS techniques. And density functional theory (DFT) was used to further reveal the oxidase-like catalytic mechanism of Hg/Ag SACs. This study provides a mild synthetic strategy to fabricate Ag aerogel-supported Hg single atoms to display promising prospects in various catalytic fields. |
doi_str_mv | 10.1021/acs.analchem.2c04548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2778978822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786240199</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-cf0ea24be0aee9bd6954469fb67bad0688b65be6e195cb4e43dbe4539a3d9abd3</originalsourceid><addsrcrecordid>eNp9kcGO0zAQhi0EYsvCGyBkiQuXlLHjOPGxqgqLVFiJwjkaO5NuliTu2olEeXpctbsHDpzm8v3_aOZj7K2ApQApPqKLSxyxd3c0LKUDVajqGVuIQkKmq0o-ZwsAyDNZAlyxVzHeAwgBQr9kV7muQBbaLNjDas9XFPye-mw3Hw4-TNTwXTfue8pWkx_4zZ5_w9H_OQ7ENyPaniLftG3nOhonvtt83_GvfuwmH1KI-zZBdzi61HL7u2swUrbtfhFf44T9MXbxNXvRYh_pzWVes5-fNj_WN9n29vOX9WqbYV7qKXMtEEplCZDI2EabQiltWqtLiw2kC60uLGkSpnBWkcobS6rIDeaNQdvk1-zDufcQ_MNMcaqHLjrqexzJz7GWZVmZMj1KJvT9P-i9n0P67YmqtFQgjEmUOlMu-BgDtfUhdAOGYy2gPimpk5L6UUl9UZJi7y7lsx2oeQo9OkgAnIFT_Gnxfzv_AnN0m6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786240199</pqid></control><display><type>article</type><title>Ag Aerogel-Supported Single-Atom Hg Nanozyme Enables Efficient SERS Monitoring of Enhanced Oxidase-Like Catalysis</title><source>ACS Publications</source><source>MEDLINE</source><creator>Liu, Di ; Gao, Huimin ; Jiang, Wenji ; Yan, Su ; Liu, Hao ; Chen, Junjie ; Wen, Sisi ; Zhang, Wei ; Wang, Xu ; Zhao, Bing ; Song, Wei</creator><creatorcontrib>Liu, Di ; Gao, Huimin ; Jiang, Wenji ; Yan, Su ; Liu, Hao ; Chen, Junjie ; Wen, Sisi ; Zhang, Wei ; Wang, Xu ; Zhao, Bing ; Song, Wei</creatorcontrib><description>In this work, three-dimensional (3D) Ag aerogel-supported Hg single-atom catalysts (SACs) were explored as an efficient surface-enhanced Raman scattering (SERS) substrate to monitor the enhanced oxidase-like reaction. The influence of the concentrations of Hg2+ to prepare 3D Hg/Ag aerogel networks on their SERS properties to monitor the oxidase-like reaction has been investigated, and a specific enhancement with an optimized addition of Hg2+ has been achieved. The formation of Ag-supported Hg SACs with the optimized Hg2+ addition was identified from a high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image and X-ray photoelectron spectroscopy (XPS) measurement at an atomic level. This is the first discovery of Hg SACs for enzyme-like reaction applications inferred by SERS techniques. And density functional theory (DFT) was used to further reveal the oxidase-like catalytic mechanism of Hg/Ag SACs. This study provides a mild synthetic strategy to fabricate Ag aerogel-supported Hg single atoms to display promising prospects in various catalytic fields.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c04548</identifier><identifier>PMID: 36802569</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerogels ; Catalysis ; Catalysts ; Chemistry ; Density functional theory ; Mercury ; Mercury (metal) ; Metal Nanoparticles - chemistry ; Oxidase ; Oxidoreductases ; Photoelectron spectroscopy ; Photoelectrons ; Raman spectra ; Scanning transmission electron microscopy ; Silver - chemistry ; Substrates ; Transmission electron microscopy ; X ray photoelectron spectroscopy</subject><ispartof>Analytical chemistry (Washington), 2023-03, Vol.95 (9), p.4335-4343</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 7, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-cf0ea24be0aee9bd6954469fb67bad0688b65be6e195cb4e43dbe4539a3d9abd3</citedby><cites>FETCH-LOGICAL-a376t-cf0ea24be0aee9bd6954469fb67bad0688b65be6e195cb4e43dbe4539a3d9abd3</cites><orcidid>0000-0001-9814-419X ; 0000-0002-0044-9743 ; 0000-0002-6414-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c04548$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c04548$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36802569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Gao, Huimin</creatorcontrib><creatorcontrib>Jiang, Wenji</creatorcontrib><creatorcontrib>Yan, Su</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Wen, Sisi</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><title>Ag Aerogel-Supported Single-Atom Hg Nanozyme Enables Efficient SERS Monitoring of Enhanced Oxidase-Like Catalysis</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In this work, three-dimensional (3D) Ag aerogel-supported Hg single-atom catalysts (SACs) were explored as an efficient surface-enhanced Raman scattering (SERS) substrate to monitor the enhanced oxidase-like reaction. The influence of the concentrations of Hg2+ to prepare 3D Hg/Ag aerogel networks on their SERS properties to monitor the oxidase-like reaction has been investigated, and a specific enhancement with an optimized addition of Hg2+ has been achieved. The formation of Ag-supported Hg SACs with the optimized Hg2+ addition was identified from a high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image and X-ray photoelectron spectroscopy (XPS) measurement at an atomic level. This is the first discovery of Hg SACs for enzyme-like reaction applications inferred by SERS techniques. And density functional theory (DFT) was used to further reveal the oxidase-like catalytic mechanism of Hg/Ag SACs. This study provides a mild synthetic strategy to fabricate Ag aerogel-supported Hg single atoms to display promising prospects in various catalytic fields.</description><subject>Aerogels</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Density functional theory</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Oxidase</subject><subject>Oxidoreductases</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Raman spectra</subject><subject>Scanning transmission electron microscopy</subject><subject>Silver - chemistry</subject><subject>Substrates</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGO0zAQhi0EYsvCGyBkiQuXlLHjOPGxqgqLVFiJwjkaO5NuliTu2olEeXpctbsHDpzm8v3_aOZj7K2ApQApPqKLSxyxd3c0LKUDVajqGVuIQkKmq0o-ZwsAyDNZAlyxVzHeAwgBQr9kV7muQBbaLNjDas9XFPye-mw3Hw4-TNTwXTfue8pWkx_4zZ5_w9H_OQ7ENyPaniLftG3nOhonvtt83_GvfuwmH1KI-zZBdzi61HL7u2swUrbtfhFf44T9MXbxNXvRYh_pzWVes5-fNj_WN9n29vOX9WqbYV7qKXMtEEplCZDI2EabQiltWqtLiw2kC60uLGkSpnBWkcobS6rIDeaNQdvk1-zDufcQ_MNMcaqHLjrqexzJz7GWZVmZMj1KJvT9P-i9n0P67YmqtFQgjEmUOlMu-BgDtfUhdAOGYy2gPimpk5L6UUl9UZJi7y7lsx2oeQo9OkgAnIFT_Gnxfzv_AnN0m6I</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Liu, Di</creator><creator>Gao, Huimin</creator><creator>Jiang, Wenji</creator><creator>Yan, Su</creator><creator>Liu, Hao</creator><creator>Chen, Junjie</creator><creator>Wen, Sisi</creator><creator>Zhang, Wei</creator><creator>Wang, Xu</creator><creator>Zhao, Bing</creator><creator>Song, Wei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9814-419X</orcidid><orcidid>https://orcid.org/0000-0002-0044-9743</orcidid><orcidid>https://orcid.org/0000-0002-6414-7015</orcidid></search><sort><creationdate>20230307</creationdate><title>Ag Aerogel-Supported Single-Atom Hg Nanozyme Enables Efficient SERS Monitoring of Enhanced Oxidase-Like Catalysis</title><author>Liu, Di ; Gao, Huimin ; Jiang, Wenji ; Yan, Su ; Liu, Hao ; Chen, Junjie ; Wen, Sisi ; Zhang, Wei ; Wang, Xu ; Zhao, Bing ; Song, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-cf0ea24be0aee9bd6954469fb67bad0688b65be6e195cb4e43dbe4539a3d9abd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerogels</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Density functional theory</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Oxidase</topic><topic>Oxidoreductases</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Raman spectra</topic><topic>Scanning transmission electron microscopy</topic><topic>Silver - chemistry</topic><topic>Substrates</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Gao, Huimin</creatorcontrib><creatorcontrib>Jiang, Wenji</creatorcontrib><creatorcontrib>Yan, Su</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Wen, Sisi</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Di</au><au>Gao, Huimin</au><au>Jiang, Wenji</au><au>Yan, Su</au><au>Liu, Hao</au><au>Chen, Junjie</au><au>Wen, Sisi</au><au>Zhang, Wei</au><au>Wang, Xu</au><au>Zhao, Bing</au><au>Song, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ag Aerogel-Supported Single-Atom Hg Nanozyme Enables Efficient SERS Monitoring of Enhanced Oxidase-Like Catalysis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-03-07</date><risdate>2023</risdate><volume>95</volume><issue>9</issue><spage>4335</spage><epage>4343</epage><pages>4335-4343</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>In this work, three-dimensional (3D) Ag aerogel-supported Hg single-atom catalysts (SACs) were explored as an efficient surface-enhanced Raman scattering (SERS) substrate to monitor the enhanced oxidase-like reaction. The influence of the concentrations of Hg2+ to prepare 3D Hg/Ag aerogel networks on their SERS properties to monitor the oxidase-like reaction has been investigated, and a specific enhancement with an optimized addition of Hg2+ has been achieved. The formation of Ag-supported Hg SACs with the optimized Hg2+ addition was identified from a high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image and X-ray photoelectron spectroscopy (XPS) measurement at an atomic level. This is the first discovery of Hg SACs for enzyme-like reaction applications inferred by SERS techniques. And density functional theory (DFT) was used to further reveal the oxidase-like catalytic mechanism of Hg/Ag SACs. This study provides a mild synthetic strategy to fabricate Ag aerogel-supported Hg single atoms to display promising prospects in various catalytic fields.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36802569</pmid><doi>10.1021/acs.analchem.2c04548</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9814-419X</orcidid><orcidid>https://orcid.org/0000-0002-0044-9743</orcidid><orcidid>https://orcid.org/0000-0002-6414-7015</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2023-03, Vol.95 (9), p.4335-4343 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2778978822 |
source | ACS Publications; MEDLINE |
subjects | Aerogels Catalysis Catalysts Chemistry Density functional theory Mercury Mercury (metal) Metal Nanoparticles - chemistry Oxidase Oxidoreductases Photoelectron spectroscopy Photoelectrons Raman spectra Scanning transmission electron microscopy Silver - chemistry Substrates Transmission electron microscopy X ray photoelectron spectroscopy |
title | Ag Aerogel-Supported Single-Atom Hg Nanozyme Enables Efficient SERS Monitoring of Enhanced Oxidase-Like Catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T04%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ag%20Aerogel-Supported%20Single-Atom%20Hg%20Nanozyme%20Enables%20Efficient%20SERS%20Monitoring%20of%20Enhanced%20Oxidase-Like%20Catalysis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Liu,%20Di&rft.date=2023-03-07&rft.volume=95&rft.issue=9&rft.spage=4335&rft.epage=4343&rft.pages=4335-4343&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c04548&rft_dat=%3Cproquest_cross%3E2786240199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786240199&rft_id=info:pmid/36802569&rfr_iscdi=true |