Ethanol‐Induced Ni2+‐Intercalated Cobalt Organic Frameworks on Vanadium Pentoxide for Synergistically Enhancing the Performance of 3D‐Printed Micro‐Supercapacitors

The synthesis of metal‐organic framework (MOF) nanocomposites with high energy density and excellent mechanical strength is limited by the degree of lattice matching and crystal surface structure. In this study, dodecahedral ZIF‐67 is synthesized uniformly on vanadium pentoxide nanowires. The influe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-05, Vol.35 (19), p.e2211523-n/a
Hauptverfasser: Zhou, Huijie, Zhu, Guoyin, Dong, Shengyang, Liu, Pin, Lu, Yiyao, Zhou, Zhen, Cao, Shuai, Zhang, Yizhou, Pang, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page e2211523
container_title Advanced materials (Weinheim)
container_volume 35
creator Zhou, Huijie
Zhu, Guoyin
Dong, Shengyang
Liu, Pin
Lu, Yiyao
Zhou, Zhen
Cao, Shuai
Zhang, Yizhou
Pang, Huan
description The synthesis of metal‐organic framework (MOF) nanocomposites with high energy density and excellent mechanical strength is limited by the degree of lattice matching and crystal surface structure. In this study, dodecahedral ZIF‐67 is synthesized uniformly on vanadium pentoxide nanowires. The influence of the coordination mode on the surface of ZIF‐67 in ethanol is also investigated. Benefitting from the different coordination abilities of Ni2+, Co2+, and N atoms, spatially separated surface‐active sites are created through metal‐ion exchange. Furthermore, the incompatibility between the d8 electronic configuration of Ni2+ and the three‐dimensional (3D) structure of ZIF‐67 afforded the synthesis of hollow structures by controlling the amount of Ni doping. The formation of NiCo‐MOF@CoOOH@V2O5 nanocomposites is confirmed using X‐ray absorption fine structure analysis. The high performance of the obtained composite is illustrated by fabricating a 3D‐printed micro‐supercapacitor, exhibiting a high area specific capacitance of 585 mF cm−2 and energy density of 159.23 µWh cm−2 (at power density = 0.34 mW cm−2). The solvent/coordination tuning strategy demonstrated in this study provides a new direction for the synthesis of high‐performance nanomaterials for electrochemical energy storage applications. The hollow structure is synthesized by controlling the amount of Ni doping by using the different coordination abilities of Ni2+ and Co2+ with N and O atoms and the incompatibility between the d8 electronic configuration of Ni2+ and the 3D structure of ZIF‐67. The composite material applied to 3D printing micro supercapacitor has excellent specific capacitance and energy density.
doi_str_mv 10.1002/adma.202211523
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2778977518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811819398</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1963-a6c6509d8a0c3f9c04e827336cce5c8e9dd150eed97ac659906ad0148df2ad013</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EEkNhy9oSGySU4p9JYi9H0ylUammlAlvrYt9MXRI72InK7HgE3oO34klwKOqC1b3n6tM9RzqEvOTsmDMm3oIb4FgwITivhXxEVmXwas10_ZismJZ1pZu1ekqe5XzLGNMNa1bk1266gRD73z9-ngU3W3T0gxdv_soJk4UepnLbxi_QT_Qy7SF4S08TDHgX09dMY6CfIYDz80CvMEzxu3dIu5jo9SFg2vs8-fKlP9BdKE7Whz2dbrCwqUBDuSCNHZUnxfIq-bC4XXibYtHX87hEGMH6Kab8nDzpoM_44t88Ip9Odx-376vzy3dn2815NXLdyAoa29RMOwXMyk5btkYlWikba7G2CrVzvGaITrdQSK1ZA47xtXKdWBZ5RF7f_x1T_DZjnszgs8W-h4Bxzka0rdJtW3NV0Ff_obdxTqGkM0JxrriWeqH0PXXnezyYMfkB0sFwZpbizFKceSjObE4uNg9K_gF8BZWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811819398</pqid></control><display><type>article</type><title>Ethanol‐Induced Ni2+‐Intercalated Cobalt Organic Frameworks on Vanadium Pentoxide for Synergistically Enhancing the Performance of 3D‐Printed Micro‐Supercapacitors</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhou, Huijie ; Zhu, Guoyin ; Dong, Shengyang ; Liu, Pin ; Lu, Yiyao ; Zhou, Zhen ; Cao, Shuai ; Zhang, Yizhou ; Pang, Huan</creator><creatorcontrib>Zhou, Huijie ; Zhu, Guoyin ; Dong, Shengyang ; Liu, Pin ; Lu, Yiyao ; Zhou, Zhen ; Cao, Shuai ; Zhang, Yizhou ; Pang, Huan</creatorcontrib><description>The synthesis of metal‐organic framework (MOF) nanocomposites with high energy density and excellent mechanical strength is limited by the degree of lattice matching and crystal surface structure. In this study, dodecahedral ZIF‐67 is synthesized uniformly on vanadium pentoxide nanowires. The influence of the coordination mode on the surface of ZIF‐67 in ethanol is also investigated. Benefitting from the different coordination abilities of Ni2+, Co2+, and N atoms, spatially separated surface‐active sites are created through metal‐ion exchange. Furthermore, the incompatibility between the d8 electronic configuration of Ni2+ and the three‐dimensional (3D) structure of ZIF‐67 afforded the synthesis of hollow structures by controlling the amount of Ni doping. The formation of NiCo‐MOF@CoOOH@V2O5 nanocomposites is confirmed using X‐ray absorption fine structure analysis. The high performance of the obtained composite is illustrated by fabricating a 3D‐printed micro‐supercapacitor, exhibiting a high area specific capacitance of 585 mF cm−2 and energy density of 159.23 µWh cm−2 (at power density = 0.34 mW cm−2). The solvent/coordination tuning strategy demonstrated in this study provides a new direction for the synthesis of high‐performance nanomaterials for electrochemical energy storage applications. The hollow structure is synthesized by controlling the amount of Ni doping by using the different coordination abilities of Ni2+ and Co2+ with N and O atoms and the incompatibility between the d8 electronic configuration of Ni2+ and the 3D structure of ZIF‐67. The composite material applied to 3D printing micro supercapacitor has excellent specific capacitance and energy density.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202211523</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Cobalt ; Coordination ; Crystal lattices ; Crystal surfaces ; Energy storage ; Ethanol ; ethanol‐induced ; Fine structure ; Incompatibility ; Ion exchange ; Lattice matching ; Materials science ; Metal-organic frameworks ; metal‐organic framework ; micro‐supercapacitor ; nanocomposite ; Nanocomposites ; Nanomaterials ; Nanowires ; Performance enhancement ; Structural analysis ; Supercapacitors ; Surface structure ; Synthesis ; Three dimensional printing ; Vanadium pentoxide</subject><ispartof>Advanced materials (Weinheim), 2023-05, Vol.35 (19), p.e2211523-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5319-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202211523$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202211523$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhou, Huijie</creatorcontrib><creatorcontrib>Zhu, Guoyin</creatorcontrib><creatorcontrib>Dong, Shengyang</creatorcontrib><creatorcontrib>Liu, Pin</creatorcontrib><creatorcontrib>Lu, Yiyao</creatorcontrib><creatorcontrib>Zhou, Zhen</creatorcontrib><creatorcontrib>Cao, Shuai</creatorcontrib><creatorcontrib>Zhang, Yizhou</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><title>Ethanol‐Induced Ni2+‐Intercalated Cobalt Organic Frameworks on Vanadium Pentoxide for Synergistically Enhancing the Performance of 3D‐Printed Micro‐Supercapacitors</title><title>Advanced materials (Weinheim)</title><description>The synthesis of metal‐organic framework (MOF) nanocomposites with high energy density and excellent mechanical strength is limited by the degree of lattice matching and crystal surface structure. In this study, dodecahedral ZIF‐67 is synthesized uniformly on vanadium pentoxide nanowires. The influence of the coordination mode on the surface of ZIF‐67 in ethanol is also investigated. Benefitting from the different coordination abilities of Ni2+, Co2+, and N atoms, spatially separated surface‐active sites are created through metal‐ion exchange. Furthermore, the incompatibility between the d8 electronic configuration of Ni2+ and the three‐dimensional (3D) structure of ZIF‐67 afforded the synthesis of hollow structures by controlling the amount of Ni doping. The formation of NiCo‐MOF@CoOOH@V2O5 nanocomposites is confirmed using X‐ray absorption fine structure analysis. The high performance of the obtained composite is illustrated by fabricating a 3D‐printed micro‐supercapacitor, exhibiting a high area specific capacitance of 585 mF cm−2 and energy density of 159.23 µWh cm−2 (at power density = 0.34 mW cm−2). The solvent/coordination tuning strategy demonstrated in this study provides a new direction for the synthesis of high‐performance nanomaterials for electrochemical energy storage applications. The hollow structure is synthesized by controlling the amount of Ni doping by using the different coordination abilities of Ni2+ and Co2+ with N and O atoms and the incompatibility between the d8 electronic configuration of Ni2+ and the 3D structure of ZIF‐67. The composite material applied to 3D printing micro supercapacitor has excellent specific capacitance and energy density.</description><subject>3D printing</subject><subject>Cobalt</subject><subject>Coordination</subject><subject>Crystal lattices</subject><subject>Crystal surfaces</subject><subject>Energy storage</subject><subject>Ethanol</subject><subject>ethanol‐induced</subject><subject>Fine structure</subject><subject>Incompatibility</subject><subject>Ion exchange</subject><subject>Lattice matching</subject><subject>Materials science</subject><subject>Metal-organic frameworks</subject><subject>metal‐organic framework</subject><subject>micro‐supercapacitor</subject><subject>nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanowires</subject><subject>Performance enhancement</subject><subject>Structural analysis</subject><subject>Supercapacitors</subject><subject>Surface structure</subject><subject>Synthesis</subject><subject>Three dimensional printing</subject><subject>Vanadium pentoxide</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhS0EEkNhy9oSGySU4p9JYi9H0ylUammlAlvrYt9MXRI72InK7HgE3oO34klwKOqC1b3n6tM9RzqEvOTsmDMm3oIb4FgwITivhXxEVmXwas10_ZismJZ1pZu1ekqe5XzLGNMNa1bk1266gRD73z9-ngU3W3T0gxdv_soJk4UepnLbxi_QT_Qy7SF4S08TDHgX09dMY6CfIYDz80CvMEzxu3dIu5jo9SFg2vs8-fKlP9BdKE7Whz2dbrCwqUBDuSCNHZUnxfIq-bC4XXibYtHX87hEGMH6Kab8nDzpoM_44t88Ip9Odx-376vzy3dn2815NXLdyAoa29RMOwXMyk5btkYlWikba7G2CrVzvGaITrdQSK1ZA47xtXKdWBZ5RF7f_x1T_DZjnszgs8W-h4Bxzka0rdJtW3NV0Ff_obdxTqGkM0JxrriWeqH0PXXnezyYMfkB0sFwZpbizFKceSjObE4uNg9K_gF8BZWs</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhou, Huijie</creator><creator>Zhu, Guoyin</creator><creator>Dong, Shengyang</creator><creator>Liu, Pin</creator><creator>Lu, Yiyao</creator><creator>Zhou, Zhen</creator><creator>Cao, Shuai</creator><creator>Zhang, Yizhou</creator><creator>Pang, Huan</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid></search><sort><creationdate>20230501</creationdate><title>Ethanol‐Induced Ni2+‐Intercalated Cobalt Organic Frameworks on Vanadium Pentoxide for Synergistically Enhancing the Performance of 3D‐Printed Micro‐Supercapacitors</title><author>Zhou, Huijie ; Zhu, Guoyin ; Dong, Shengyang ; Liu, Pin ; Lu, Yiyao ; Zhou, Zhen ; Cao, Shuai ; Zhang, Yizhou ; Pang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1963-a6c6509d8a0c3f9c04e827336cce5c8e9dd150eed97ac659906ad0148df2ad013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Cobalt</topic><topic>Coordination</topic><topic>Crystal lattices</topic><topic>Crystal surfaces</topic><topic>Energy storage</topic><topic>Ethanol</topic><topic>ethanol‐induced</topic><topic>Fine structure</topic><topic>Incompatibility</topic><topic>Ion exchange</topic><topic>Lattice matching</topic><topic>Materials science</topic><topic>Metal-organic frameworks</topic><topic>metal‐organic framework</topic><topic>micro‐supercapacitor</topic><topic>nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanowires</topic><topic>Performance enhancement</topic><topic>Structural analysis</topic><topic>Supercapacitors</topic><topic>Surface structure</topic><topic>Synthesis</topic><topic>Three dimensional printing</topic><topic>Vanadium pentoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huijie</creatorcontrib><creatorcontrib>Zhu, Guoyin</creatorcontrib><creatorcontrib>Dong, Shengyang</creatorcontrib><creatorcontrib>Liu, Pin</creatorcontrib><creatorcontrib>Lu, Yiyao</creatorcontrib><creatorcontrib>Zhou, Zhen</creatorcontrib><creatorcontrib>Cao, Shuai</creatorcontrib><creatorcontrib>Zhang, Yizhou</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Huijie</au><au>Zhu, Guoyin</au><au>Dong, Shengyang</au><au>Liu, Pin</au><au>Lu, Yiyao</au><au>Zhou, Zhen</au><au>Cao, Shuai</au><au>Zhang, Yizhou</au><au>Pang, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethanol‐Induced Ni2+‐Intercalated Cobalt Organic Frameworks on Vanadium Pentoxide for Synergistically Enhancing the Performance of 3D‐Printed Micro‐Supercapacitors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>19</issue><spage>e2211523</spage><epage>n/a</epage><pages>e2211523-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The synthesis of metal‐organic framework (MOF) nanocomposites with high energy density and excellent mechanical strength is limited by the degree of lattice matching and crystal surface structure. In this study, dodecahedral ZIF‐67 is synthesized uniformly on vanadium pentoxide nanowires. The influence of the coordination mode on the surface of ZIF‐67 in ethanol is also investigated. Benefitting from the different coordination abilities of Ni2+, Co2+, and N atoms, spatially separated surface‐active sites are created through metal‐ion exchange. Furthermore, the incompatibility between the d8 electronic configuration of Ni2+ and the three‐dimensional (3D) structure of ZIF‐67 afforded the synthesis of hollow structures by controlling the amount of Ni doping. The formation of NiCo‐MOF@CoOOH@V2O5 nanocomposites is confirmed using X‐ray absorption fine structure analysis. The high performance of the obtained composite is illustrated by fabricating a 3D‐printed micro‐supercapacitor, exhibiting a high area specific capacitance of 585 mF cm−2 and energy density of 159.23 µWh cm−2 (at power density = 0.34 mW cm−2). The solvent/coordination tuning strategy demonstrated in this study provides a new direction for the synthesis of high‐performance nanomaterials for electrochemical energy storage applications. The hollow structure is synthesized by controlling the amount of Ni doping by using the different coordination abilities of Ni2+ and Co2+ with N and O atoms and the incompatibility between the d8 electronic configuration of Ni2+ and the 3D structure of ZIF‐67. The composite material applied to 3D printing micro supercapacitor has excellent specific capacitance and energy density.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202211523</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-05, Vol.35 (19), p.e2211523-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2778977518
source Wiley Online Library - AutoHoldings Journals
subjects 3D printing
Cobalt
Coordination
Crystal lattices
Crystal surfaces
Energy storage
Ethanol
ethanol‐induced
Fine structure
Incompatibility
Ion exchange
Lattice matching
Materials science
Metal-organic frameworks
metal‐organic framework
micro‐supercapacitor
nanocomposite
Nanocomposites
Nanomaterials
Nanowires
Performance enhancement
Structural analysis
Supercapacitors
Surface structure
Synthesis
Three dimensional printing
Vanadium pentoxide
title Ethanol‐Induced Ni2+‐Intercalated Cobalt Organic Frameworks on Vanadium Pentoxide for Synergistically Enhancing the Performance of 3D‐Printed Micro‐Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethanol%E2%80%90Induced%20Ni2+%E2%80%90Intercalated%20Cobalt%20Organic%20Frameworks%20on%20Vanadium%20Pentoxide%20for%20Synergistically%20Enhancing%20the%20Performance%20of%203D%E2%80%90Printed%20Micro%E2%80%90Supercapacitors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhou,%20Huijie&rft.date=2023-05-01&rft.volume=35&rft.issue=19&rft.spage=e2211523&rft.epage=n/a&rft.pages=e2211523-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202211523&rft_dat=%3Cproquest_wiley%3E2811819398%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811819398&rft_id=info:pmid/&rfr_iscdi=true