LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi0.8Co0.1Mn0.1O2 Batteries

Li-metal batteries (LMBs), especially in combination with high-energy-density Ni-rich materials, exhibit great potential for next-generation rechargeable Li batteries. Nevertheless, poor cathode–/anode–electrolyte interfaces (CEI/SEI) and hydrofluoric acid (HF) attack pose a threat to the electroche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-03, Vol.15 (9), p.11777-11786
Hauptverfasser: Lei, Yue, Xu, Xin, Yin, Junying, Jiang, Sen, Xi, Kang, Wei, Lai, Gao, Yunfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11786
container_issue 9
container_start_page 11777
container_title ACS applied materials & interfaces
container_volume 15
creator Lei, Yue
Xu, Xin
Yin, Junying
Jiang, Sen
Xi, Kang
Wei, Lai
Gao, Yunfang
description Li-metal batteries (LMBs), especially in combination with high-energy-density Ni-rich materials, exhibit great potential for next-generation rechargeable Li batteries. Nevertheless, poor cathode–/anode–electrolyte interfaces (CEI/SEI) and hydrofluoric acid (HF) attack pose a threat to the electrochemical and safety performances of LMBs due to aggressive chemical and electrochemical reactivities of high-Ni materials, metallic Li, and carbonate-based electrolytes with the LiPF6 salt. Herein, the carbonate electrolyte based on LiPF6 is formulated by a multifunctional electrolyte additive pentafluorophenyl trifluoroacetate (PFTF) to adapt the Li/LiNi0.8Co0.1Mn0.1O2 (NCM811) battery. It is theoretically illustrated and experimentally revealed that HF elimination and the LiF-rich CEI/SEI films are successfully achieved via the chemical and electrochemical reactions of the PFTF additive. Significantly, the LiF-rich SEI film with high electrochemical kinetics facilitates Li homogeneous deposition and prevents dendritic Li from forming and growing. Benefiting from the collaborative protection of PFTF on the interfacial modification and HF capture, the capacity ratio of the Li/NCM811 battery is boosted by 22.4%, and the cycling stability of the symmetrical Li cell is expanded over 500 h. This provided strategy is conducive to the achievement of high-performance LMBs with Ni-rich materials by optimizing the electrolyte formula.
doi_str_mv 10.1021/acsami.2c22089
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2778972731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778972731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-8ecf1814b886e162df7d1060c47295d8af305d45b71f664909c44b9983feba053</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFavnvcoQtrdzSbZPdbS2kJqRfQcNvvHTkk2mk0KfgE_tyktXmYG5vHmzQ-he0omlDA6VTqoGiZMM0aEvEAjKjmPBEvY5f_M-TW6CWFPSBozkozQbw7L6A30Dq99Z1untA1YeYNXS7yooAavOmg8nukd2IM1uPzBCm_6qgPXe33cqQrPjIEODhYvvCori1fwuYteB7umrZXXFucwzeEFyETMmyHuxg9ly_CT6oajYMMtunKqCvbu3MfoY7l4n6-ifPu8ns_ySDEWd5Gw2lFBeSlEamnKjMsMJSnRPGMyMUK5mCSGJ2VGXZpySaTmvJRSxM6WiiTxGD2cfL_a5ru3oStqCNpWlfK26UPBskzIjGUxHaSPJ-nAtdg3fTs8GgpKiiPs4gS7OMOO_wDZNnG_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778972731</pqid></control><display><type>article</type><title>LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi0.8Co0.1Mn0.1O2 Batteries</title><source>ACS Publications</source><creator>Lei, Yue ; Xu, Xin ; Yin, Junying ; Jiang, Sen ; Xi, Kang ; Wei, Lai ; Gao, Yunfang</creator><creatorcontrib>Lei, Yue ; Xu, Xin ; Yin, Junying ; Jiang, Sen ; Xi, Kang ; Wei, Lai ; Gao, Yunfang</creatorcontrib><description>Li-metal batteries (LMBs), especially in combination with high-energy-density Ni-rich materials, exhibit great potential for next-generation rechargeable Li batteries. Nevertheless, poor cathode–/anode–electrolyte interfaces (CEI/SEI) and hydrofluoric acid (HF) attack pose a threat to the electrochemical and safety performances of LMBs due to aggressive chemical and electrochemical reactivities of high-Ni materials, metallic Li, and carbonate-based electrolytes with the LiPF6 salt. Herein, the carbonate electrolyte based on LiPF6 is formulated by a multifunctional electrolyte additive pentafluorophenyl trifluoroacetate (PFTF) to adapt the Li/LiNi0.8Co0.1Mn0.1O2 (NCM811) battery. It is theoretically illustrated and experimentally revealed that HF elimination and the LiF-rich CEI/SEI films are successfully achieved via the chemical and electrochemical reactions of the PFTF additive. Significantly, the LiF-rich SEI film with high electrochemical kinetics facilitates Li homogeneous deposition and prevents dendritic Li from forming and growing. Benefiting from the collaborative protection of PFTF on the interfacial modification and HF capture, the capacity ratio of the Li/NCM811 battery is boosted by 22.4%, and the cycling stability of the symmetrical Li cell is expanded over 500 h. This provided strategy is conducive to the achievement of high-performance LMBs with Ni-rich materials by optimizing the electrolyte formula.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c22089</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-03, Vol.15 (9), p.11777-11786</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3119-0081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c22089$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c22089$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Lei, Yue</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Yin, Junying</creatorcontrib><creatorcontrib>Jiang, Sen</creatorcontrib><creatorcontrib>Xi, Kang</creatorcontrib><creatorcontrib>Wei, Lai</creatorcontrib><creatorcontrib>Gao, Yunfang</creatorcontrib><title>LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi0.8Co0.1Mn0.1O2 Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Li-metal batteries (LMBs), especially in combination with high-energy-density Ni-rich materials, exhibit great potential for next-generation rechargeable Li batteries. Nevertheless, poor cathode–/anode–electrolyte interfaces (CEI/SEI) and hydrofluoric acid (HF) attack pose a threat to the electrochemical and safety performances of LMBs due to aggressive chemical and electrochemical reactivities of high-Ni materials, metallic Li, and carbonate-based electrolytes with the LiPF6 salt. Herein, the carbonate electrolyte based on LiPF6 is formulated by a multifunctional electrolyte additive pentafluorophenyl trifluoroacetate (PFTF) to adapt the Li/LiNi0.8Co0.1Mn0.1O2 (NCM811) battery. It is theoretically illustrated and experimentally revealed that HF elimination and the LiF-rich CEI/SEI films are successfully achieved via the chemical and electrochemical reactions of the PFTF additive. Significantly, the LiF-rich SEI film with high electrochemical kinetics facilitates Li homogeneous deposition and prevents dendritic Li from forming and growing. Benefiting from the collaborative protection of PFTF on the interfacial modification and HF capture, the capacity ratio of the Li/NCM811 battery is boosted by 22.4%, and the cycling stability of the symmetrical Li cell is expanded over 500 h. This provided strategy is conducive to the achievement of high-performance LMBs with Ni-rich materials by optimizing the electrolyte formula.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxRdRsFavnvcoQtrdzSbZPdbS2kJqRfQcNvvHTkk2mk0KfgE_tyktXmYG5vHmzQ-he0omlDA6VTqoGiZMM0aEvEAjKjmPBEvY5f_M-TW6CWFPSBozkozQbw7L6A30Dq99Z1untA1YeYNXS7yooAavOmg8nukd2IM1uPzBCm_6qgPXe33cqQrPjIEODhYvvCori1fwuYteB7umrZXXFucwzeEFyETMmyHuxg9ly_CT6oajYMMtunKqCvbu3MfoY7l4n6-ifPu8ns_ySDEWd5Gw2lFBeSlEamnKjMsMJSnRPGMyMUK5mCSGJ2VGXZpySaTmvJRSxM6WiiTxGD2cfL_a5ru3oStqCNpWlfK26UPBskzIjGUxHaSPJ-nAtdg3fTs8GgpKiiPs4gS7OMOO_wDZNnG_</recordid><startdate>20230308</startdate><enddate>20230308</enddate><creator>Lei, Yue</creator><creator>Xu, Xin</creator><creator>Yin, Junying</creator><creator>Jiang, Sen</creator><creator>Xi, Kang</creator><creator>Wei, Lai</creator><creator>Gao, Yunfang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3119-0081</orcidid></search><sort><creationdate>20230308</creationdate><title>LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi0.8Co0.1Mn0.1O2 Batteries</title><author>Lei, Yue ; Xu, Xin ; Yin, Junying ; Jiang, Sen ; Xi, Kang ; Wei, Lai ; Gao, Yunfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-8ecf1814b886e162df7d1060c47295d8af305d45b71f664909c44b9983feba053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Yue</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Yin, Junying</creatorcontrib><creatorcontrib>Jiang, Sen</creatorcontrib><creatorcontrib>Xi, Kang</creatorcontrib><creatorcontrib>Wei, Lai</creatorcontrib><creatorcontrib>Gao, Yunfang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Yue</au><au>Xu, Xin</au><au>Yin, Junying</au><au>Jiang, Sen</au><au>Xi, Kang</au><au>Wei, Lai</au><au>Gao, Yunfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi0.8Co0.1Mn0.1O2 Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-03-08</date><risdate>2023</risdate><volume>15</volume><issue>9</issue><spage>11777</spage><epage>11786</epage><pages>11777-11786</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Li-metal batteries (LMBs), especially in combination with high-energy-density Ni-rich materials, exhibit great potential for next-generation rechargeable Li batteries. Nevertheless, poor cathode–/anode–electrolyte interfaces (CEI/SEI) and hydrofluoric acid (HF) attack pose a threat to the electrochemical and safety performances of LMBs due to aggressive chemical and electrochemical reactivities of high-Ni materials, metallic Li, and carbonate-based electrolytes with the LiPF6 salt. Herein, the carbonate electrolyte based on LiPF6 is formulated by a multifunctional electrolyte additive pentafluorophenyl trifluoroacetate (PFTF) to adapt the Li/LiNi0.8Co0.1Mn0.1O2 (NCM811) battery. It is theoretically illustrated and experimentally revealed that HF elimination and the LiF-rich CEI/SEI films are successfully achieved via the chemical and electrochemical reactions of the PFTF additive. Significantly, the LiF-rich SEI film with high electrochemical kinetics facilitates Li homogeneous deposition and prevents dendritic Li from forming and growing. Benefiting from the collaborative protection of PFTF on the interfacial modification and HF capture, the capacity ratio of the Li/NCM811 battery is boosted by 22.4%, and the cycling stability of the symmetrical Li cell is expanded over 500 h. This provided strategy is conducive to the achievement of high-performance LMBs with Ni-rich materials by optimizing the electrolyte formula.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c22089</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3119-0081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-03, Vol.15 (9), p.11777-11786
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2778972731
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi0.8Co0.1Mn0.1O2 Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LiF-Rich%20Interfaces%20and%20HF%20Elimination%20Achieved%20by%20a%20Multifunctional%20Additive%20Enable%20High-Performance%20Li/LiNi0.8Co0.1Mn0.1O2%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lei,%20Yue&rft.date=2023-03-08&rft.volume=15&rft.issue=9&rft.spage=11777&rft.epage=11786&rft.pages=11777-11786&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c22089&rft_dat=%3Cproquest_acs_j%3E2778972731%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778972731&rft_id=info:pmid/&rfr_iscdi=true