Truncation Error Analysis in Turbulent Boundary Layers
The influence of turbulence model and numerical technique on RANS computations is discussed in the case of turbulent boundary layer flow on a flat plate. In particular, results are presented for a centered scheme with artificial dissipation and a ENO-type scheme with the Baldwin-Lomax and Spalart-Al...
Gespeichert in:
Veröffentlicht in: | Journal of fluids engineering 2002-09, Vol.124 (3), p.657-663 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 3 |
container_start_page | 657 |
container_title | Journal of fluids engineering |
container_volume | 124 |
creator | Di Mascio, A Paciorri, R Favini, B |
description | The influence of turbulence model and numerical technique on RANS computations is discussed in the case of turbulent boundary layer flow on a flat plate. In particular, results are presented for a centered scheme with artificial dissipation and a ENO-type scheme with the Baldwin-Lomax and Spalart-Allmaras models. First, in an a priori analysis, the truncation errors are evaluated under the assumption of parallel Couette flow and some conclusions about mesh optimization and scheme performance are drawn. Then, the a posteriori analysis for the numerical solution of turbulent boundary layer on a flat plate is performed. Grid Convergence Index and convergence rate analysis confirm the a priori results. |
doi_str_mv | 10.1115/1.1478564 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27781257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27781257</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-d8673751bdfacc90edf682021ac4aaa8a62f48de32490a2a00d127fb831e3e733</originalsourceid><addsrcrecordid>eNpFkL9rwzAQhUVpoWnaoXMXLy10cKqTZEse05D-gECXFLqJiyyDgyOnOmvIf1-HBAoHt3zv8fgYuwc-A4DiBWagtClKdcEmUAiTVxx-LtmE88rkQnBxzW6ItpyDlMpMWLmOKTgc2j5kyxj7mM0DdgdqKWtDtk5xkzofhuy1T6HGeMhWePCRbtlVgx35u_Ofsu-35Xrxka--3j8X81WOkpshr02ppS5gUzfoXMV93ZRmHAHoFCIaLEWjTO2lUBVHgZzXIHSzMRK89FrKKXs69e5j_5s8DXbXkvNdh8H3iazQ2oAo9Ag-n0AXe6LoG7uP7W4cbIHboxkL9mxmZB_PpUgOuyZicC39B2QFQlblyD2cOKSdt9s-xVENWaWUHO8PBlBqzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27781257</pqid></control><display><type>article</type><title>Truncation Error Analysis in Turbulent Boundary Layers</title><source>ASME Transactions Journals (Current)</source><creator>Di Mascio, A ; Paciorri, R ; Favini, B</creator><creatorcontrib>Di Mascio, A ; Paciorri, R ; Favini, B</creatorcontrib><description>The influence of turbulence model and numerical technique on RANS computations is discussed in the case of turbulent boundary layer flow on a flat plate. In particular, results are presented for a centered scheme with artificial dissipation and a ENO-type scheme with the Baldwin-Lomax and Spalart-Allmaras models. First, in an a priori analysis, the truncation errors are evaluated under the assumption of parallel Couette flow and some conclusions about mesh optimization and scheme performance are drawn. Then, the a posteriori analysis for the numerical solution of turbulent boundary layer on a flat plate is performed. Grid Convergence Index and convergence rate analysis confirm the a priori results.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.1478564</identifier><identifier>CODEN: JFEGA4</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Boundary layer and shear turbulence ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluids engineering, 2002-09, Vol.124 (3), p.657-663</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a308t-d8673751bdfacc90edf682021ac4aaa8a62f48de32490a2a00d127fb831e3e733</citedby><cites>FETCH-LOGICAL-a308t-d8673751bdfacc90edf682021ac4aaa8a62f48de32490a2a00d127fb831e3e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13912396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Mascio, A</creatorcontrib><creatorcontrib>Paciorri, R</creatorcontrib><creatorcontrib>Favini, B</creatorcontrib><title>Truncation Error Analysis in Turbulent Boundary Layers</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>The influence of turbulence model and numerical technique on RANS computations is discussed in the case of turbulent boundary layer flow on a flat plate. In particular, results are presented for a centered scheme with artificial dissipation and a ENO-type scheme with the Baldwin-Lomax and Spalart-Allmaras models. First, in an a priori analysis, the truncation errors are evaluated under the assumption of parallel Couette flow and some conclusions about mesh optimization and scheme performance are drawn. Then, the a posteriori analysis for the numerical solution of turbulent boundary layer on a flat plate is performed. Grid Convergence Index and convergence rate analysis confirm the a priori results.</description><subject>Boundary layer and shear turbulence</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpFkL9rwzAQhUVpoWnaoXMXLy10cKqTZEse05D-gECXFLqJiyyDgyOnOmvIf1-HBAoHt3zv8fgYuwc-A4DiBWagtClKdcEmUAiTVxx-LtmE88rkQnBxzW6ItpyDlMpMWLmOKTgc2j5kyxj7mM0DdgdqKWtDtk5xkzofhuy1T6HGeMhWePCRbtlVgx35u_Ofsu-35Xrxka--3j8X81WOkpshr02ppS5gUzfoXMV93ZRmHAHoFCIaLEWjTO2lUBVHgZzXIHSzMRK89FrKKXs69e5j_5s8DXbXkvNdh8H3iazQ2oAo9Ag-n0AXe6LoG7uP7W4cbIHboxkL9mxmZB_PpUgOuyZicC39B2QFQlblyD2cOKSdt9s-xVENWaWUHO8PBlBqzA</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Di Mascio, A</creator><creator>Paciorri, R</creator><creator>Favini, B</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020901</creationdate><title>Truncation Error Analysis in Turbulent Boundary Layers</title><author>Di Mascio, A ; Paciorri, R ; Favini, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-d8673751bdfacc90edf682021ac4aaa8a62f48de32490a2a00d127fb831e3e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Boundary layer and shear turbulence</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Mascio, A</creatorcontrib><creatorcontrib>Paciorri, R</creatorcontrib><creatorcontrib>Favini, B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Mascio, A</au><au>Paciorri, R</au><au>Favini, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Truncation Error Analysis in Turbulent Boundary Layers</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2002-09-01</date><risdate>2002</risdate><volume>124</volume><issue>3</issue><spage>657</spage><epage>663</epage><pages>657-663</pages><issn>0098-2202</issn><eissn>1528-901X</eissn><coden>JFEGA4</coden><abstract>The influence of turbulence model and numerical technique on RANS computations is discussed in the case of turbulent boundary layer flow on a flat plate. In particular, results are presented for a centered scheme with artificial dissipation and a ENO-type scheme with the Baldwin-Lomax and Spalart-Allmaras models. First, in an a priori analysis, the truncation errors are evaluated under the assumption of parallel Couette flow and some conclusions about mesh optimization and scheme performance are drawn. Then, the a posteriori analysis for the numerical solution of turbulent boundary layer on a flat plate is performed. Grid Convergence Index and convergence rate analysis confirm the a priori results.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.1478564</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-2202 |
ispartof | Journal of fluids engineering, 2002-09, Vol.124 (3), p.657-663 |
issn | 0098-2202 1528-901X |
language | eng |
recordid | cdi_proquest_miscellaneous_27781257 |
source | ASME Transactions Journals (Current) |
subjects | Boundary layer and shear turbulence Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Turbulence simulation and modeling Turbulent flows, convection, and heat transfer |
title | Truncation Error Analysis in Turbulent Boundary Layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Truncation%20Error%20Analysis%20in%20Turbulent%20Boundary%20Layers&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Di%20Mascio,%20A&rft.date=2002-09-01&rft.volume=124&rft.issue=3&rft.spage=657&rft.epage=663&rft.pages=657-663&rft.issn=0098-2202&rft.eissn=1528-901X&rft.coden=JFEGA4&rft_id=info:doi/10.1115/1.1478564&rft_dat=%3Cproquest_cross%3E27781257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27781257&rft_id=info:pmid/&rfr_iscdi=true |