Transforming pixel signatures into an improved metric space
We address the problem of using scale-orientation pixel signatures to characterise local structure in X-ray mammograms, though the method we report is of general application. When signatures are treated as vectors for statistical analysis, the Euclidean metric is not well behaved. We have previously...
Gespeichert in:
Veröffentlicht in: | Image and vision computing 2002-08, Vol.20 (9), p.701-707 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 707 |
---|---|
container_issue | 9 |
container_start_page | 701 |
container_title | Image and vision computing |
container_volume | 20 |
creator | Holmes, A.S. Rose, C.J. Taylor, C.J. |
description | We address the problem of using scale-orientation pixel signatures to characterise local structure in X-ray mammograms, though the method we report is of general application. When signatures are treated as vectors for statistical analysis, the Euclidean metric is not well behaved. We have previously described a Best Partial Match (BPM) metric that measures signature similarity more naturally, but at high computational cost. We present a method for transforming signatures into a new space in which Euclidean distance approximates BPM distance, allowing BPM distance to be estimated at low computational cost. The new space is constructed using multi-dimensional scaling. The nonlinear transformation between the old and new spaces is learned using support vector regression. We present experimental results for mammographic data. |
doi_str_mv | 10.1016/S0262-8856(02)00060-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27779945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885602000604</els_id><sourcerecordid>27779945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-914e4ad383103e6120c204104aff1bd13aa1a87473afebbb2d7596a43eb25a73</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_gpCT6CE6-5HsBg8ixS8oeLD3ZbKZlJV8uZsW_femVrx6Ghie92XmYeycwzUHnt-8gchFakyWX4K4AoAcUnXAZtzoac2lOWSzP-SYncT4PkEadDFjt6uAXaz70PpunQz-k5ok-nWH4yZQTHw39gl2iW-H0G-pSloag3dJHNDRKTuqsYl09jvnbPX4sFo8p8vXp5fF_TJ1UpoxLbgihZU0koOknAtwAhQHhXXNy4pLRI5GKy2xprIsRaWzIkclqRQZajlnF_va6YSPDcXRtj46ahrsqN9EK7TWRaGyCcz2oAt9jIFqOwTfYviyHOzOlP0xZXcaLAj7Y8qqKXe3z9H0xNZTsNF56hxVPpAbbdX7fxq-ATMhcDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27779945</pqid></control><display><type>article</type><title>Transforming pixel signatures into an improved metric space</title><source>Elsevier ScienceDirect Journals</source><creator>Holmes, A.S. ; Rose, C.J. ; Taylor, C.J.</creator><creatorcontrib>Holmes, A.S. ; Rose, C.J. ; Taylor, C.J.</creatorcontrib><description>We address the problem of using scale-orientation pixel signatures to characterise local structure in X-ray mammograms, though the method we report is of general application. When signatures are treated as vectors for statistical analysis, the Euclidean metric is not well behaved. We have previously described a Best Partial Match (BPM) metric that measures signature similarity more naturally, but at high computational cost. We present a method for transforming signatures into a new space in which Euclidean distance approximates BPM distance, allowing BPM distance to be estimated at low computational cost. The new space is constructed using multi-dimensional scaling. The nonlinear transformation between the old and new spaces is learned using support vector regression. We present experimental results for mammographic data.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/S0262-8856(02)00060-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer-aided mammography ; Metric space ; Multidimensional scaling ; Scale-orientation pixel signature ; Support vector regression</subject><ispartof>Image and vision computing, 2002-08, Vol.20 (9), p.701-707</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-914e4ad383103e6120c204104aff1bd13aa1a87473afebbb2d7596a43eb25a73</citedby><cites>FETCH-LOGICAL-c338t-914e4ad383103e6120c204104aff1bd13aa1a87473afebbb2d7596a43eb25a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0262885602000604$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Holmes, A.S.</creatorcontrib><creatorcontrib>Rose, C.J.</creatorcontrib><creatorcontrib>Taylor, C.J.</creatorcontrib><title>Transforming pixel signatures into an improved metric space</title><title>Image and vision computing</title><description>We address the problem of using scale-orientation pixel signatures to characterise local structure in X-ray mammograms, though the method we report is of general application. When signatures are treated as vectors for statistical analysis, the Euclidean metric is not well behaved. We have previously described a Best Partial Match (BPM) metric that measures signature similarity more naturally, but at high computational cost. We present a method for transforming signatures into a new space in which Euclidean distance approximates BPM distance, allowing BPM distance to be estimated at low computational cost. The new space is constructed using multi-dimensional scaling. The nonlinear transformation between the old and new spaces is learned using support vector regression. We present experimental results for mammographic data.</description><subject>Computer-aided mammography</subject><subject>Metric space</subject><subject>Multidimensional scaling</subject><subject>Scale-orientation pixel signature</subject><subject>Support vector regression</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFZ_gpCT6CE6-5HsBg8ixS8oeLD3ZbKZlJV8uZsW_femVrx6Ghie92XmYeycwzUHnt-8gchFakyWX4K4AoAcUnXAZtzoac2lOWSzP-SYncT4PkEadDFjt6uAXaz70PpunQz-k5ok-nWH4yZQTHw39gl2iW-H0G-pSloag3dJHNDRKTuqsYl09jvnbPX4sFo8p8vXp5fF_TJ1UpoxLbgihZU0koOknAtwAhQHhXXNy4pLRI5GKy2xprIsRaWzIkclqRQZajlnF_va6YSPDcXRtj46ahrsqN9EK7TWRaGyCcz2oAt9jIFqOwTfYviyHOzOlP0xZXcaLAj7Y8qqKXe3z9H0xNZTsNF56hxVPpAbbdX7fxq-ATMhcDE</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Holmes, A.S.</creator><creator>Rose, C.J.</creator><creator>Taylor, C.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020801</creationdate><title>Transforming pixel signatures into an improved metric space</title><author>Holmes, A.S. ; Rose, C.J. ; Taylor, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-914e4ad383103e6120c204104aff1bd13aa1a87473afebbb2d7596a43eb25a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Computer-aided mammography</topic><topic>Metric space</topic><topic>Multidimensional scaling</topic><topic>Scale-orientation pixel signature</topic><topic>Support vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, A.S.</creatorcontrib><creatorcontrib>Rose, C.J.</creatorcontrib><creatorcontrib>Taylor, C.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, A.S.</au><au>Rose, C.J.</au><au>Taylor, C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transforming pixel signatures into an improved metric space</atitle><jtitle>Image and vision computing</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>20</volume><issue>9</issue><spage>701</spage><epage>707</epage><pages>701-707</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>We address the problem of using scale-orientation pixel signatures to characterise local structure in X-ray mammograms, though the method we report is of general application. When signatures are treated as vectors for statistical analysis, the Euclidean metric is not well behaved. We have previously described a Best Partial Match (BPM) metric that measures signature similarity more naturally, but at high computational cost. We present a method for transforming signatures into a new space in which Euclidean distance approximates BPM distance, allowing BPM distance to be estimated at low computational cost. The new space is constructed using multi-dimensional scaling. The nonlinear transformation between the old and new spaces is learned using support vector regression. We present experimental results for mammographic data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0262-8856(02)00060-4</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-8856 |
ispartof | Image and vision computing, 2002-08, Vol.20 (9), p.701-707 |
issn | 0262-8856 1872-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_27779945 |
source | Elsevier ScienceDirect Journals |
subjects | Computer-aided mammography Metric space Multidimensional scaling Scale-orientation pixel signature Support vector regression |
title | Transforming pixel signatures into an improved metric space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transforming%20pixel%20signatures%20into%20an%20improved%20metric%20space&rft.jtitle=Image%20and%20vision%20computing&rft.au=Holmes,%20A.S.&rft.date=2002-08-01&rft.volume=20&rft.issue=9&rft.spage=701&rft.epage=707&rft.pages=701-707&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/S0262-8856(02)00060-4&rft_dat=%3Cproquest_cross%3E27779945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27779945&rft_id=info:pmid/&rft_els_id=S0262885602000604&rfr_iscdi=true |