The role of mask charging in profile evolution and gate oxide degradation

Through detailed numerical simulations we investigate the role of insulator mask thickness in altering the fidelity of pattern transfer and causing damage to buried gate oxides during plasma etching. While a certain scaling with the mask aspect ratio is known to exist, we find that the mask thicknes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2002-07, Vol.61, p.835-847
Hauptverfasser: Giapis, K.P., Hwang, G.S., Joubert, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 847
container_issue
container_start_page 835
container_title Microelectronic engineering
container_volume 61
creator Giapis, K.P.
Hwang, G.S.
Joubert, O.
description Through detailed numerical simulations we investigate the role of insulator mask thickness in altering the fidelity of pattern transfer and causing damage to buried gate oxides during plasma etching. While a certain scaling with the mask aspect ratio is known to exist, we find that the mask thickness changes the contact time of ions with the local electric fields, which can perturb the ion trajectories leading to sidewall bowing and microtrenching. For very thick masks, the simulations reveal an ion focusing effect due to significant positive charging of the mask sidewalls which could lead to rounded profiles. The ion flux to the trench bottom is reduced with a concomitant decrease in charging damage, as suggested by the drop in net current to a buried gate electrically connected to the etched structure.
doi_str_mv 10.1016/S0167-9317(02)00459-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27777975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931702004598</els_id><sourcerecordid>27777975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-277bf74023e5cfd7883b4315541461fb1ff15ecba74a1aa1ff95215eda65fa053</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwE5ByAcGhkLRNk54QmviYNIkD4xx5qdMFunYk3QT_nuxDcORiy_Fjv85LyDlnN5zx4vY1BpmUGZdXLL1mLBdlog7IgCuZJUIU6pAMfpFjchLCO4t1ztSAjKdzpL5rkHaWLiB8UDMHX7u2pq6lS99ZF3u47ppV77qWQlvRGvqIf7kKaYW1hwo2rVNyZKEJeLbPQ_L2-DAdPSeTl6fx6H6SmKxQfZJKObMyZ2mGwthKKpXN8owLkfO84HbGreUCzQxkDhwglqVI40sFhbDARDYkl7u98bjPFYZeL1ww2DTQYrcKOgpIWcoNKHag8V0IHq1eercA_6050xvj9NY4vXFFs1RvjdMqzl3sBSAYaKyH1rjwN5zF61VRRO5ux2H87dqh18E4bA1WzqPpddW5f5R-AMvEgfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27777975</pqid></control><display><type>article</type><title>The role of mask charging in profile evolution and gate oxide degradation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Giapis, K.P. ; Hwang, G.S. ; Joubert, O.</creator><creatorcontrib>Giapis, K.P. ; Hwang, G.S. ; Joubert, O.</creatorcontrib><description>Through detailed numerical simulations we investigate the role of insulator mask thickness in altering the fidelity of pattern transfer and causing damage to buried gate oxides during plasma etching. While a certain scaling with the mask aspect ratio is known to exist, we find that the mask thickness changes the contact time of ions with the local electric fields, which can perturb the ion trajectories leading to sidewall bowing and microtrenching. For very thick masks, the simulations reveal an ion focusing effect due to significant positive charging of the mask sidewalls which could lead to rounded profiles. The ion flux to the trench bottom is reduced with a concomitant decrease in charging damage, as suggested by the drop in net current to a buried gate electrically connected to the etched structure.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/S0167-9317(02)00459-8</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Gate oxide damage ; Mask charging ; Microelectronic fabrication (materials and surfaces technology) ; Plasma etching ; Profile evolution ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Microelectronic engineering, 2002-07, Vol.61, p.835-847</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-277bf74023e5cfd7883b4315541461fb1ff15ecba74a1aa1ff95215eda65fa053</citedby><cites>FETCH-LOGICAL-c368t-277bf74023e5cfd7883b4315541461fb1ff15ecba74a1aa1ff95215eda65fa053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-9317(02)00459-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13740866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Giapis, K.P.</creatorcontrib><creatorcontrib>Hwang, G.S.</creatorcontrib><creatorcontrib>Joubert, O.</creatorcontrib><title>The role of mask charging in profile evolution and gate oxide degradation</title><title>Microelectronic engineering</title><description>Through detailed numerical simulations we investigate the role of insulator mask thickness in altering the fidelity of pattern transfer and causing damage to buried gate oxides during plasma etching. While a certain scaling with the mask aspect ratio is known to exist, we find that the mask thickness changes the contact time of ions with the local electric fields, which can perturb the ion trajectories leading to sidewall bowing and microtrenching. For very thick masks, the simulations reveal an ion focusing effect due to significant positive charging of the mask sidewalls which could lead to rounded profiles. The ion flux to the trench bottom is reduced with a concomitant decrease in charging damage, as suggested by the drop in net current to a buried gate electrically connected to the etched structure.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gate oxide damage</subject><subject>Mask charging</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Plasma etching</subject><subject>Profile evolution</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwE5ByAcGhkLRNk54QmviYNIkD4xx5qdMFunYk3QT_nuxDcORiy_Fjv85LyDlnN5zx4vY1BpmUGZdXLL1mLBdlog7IgCuZJUIU6pAMfpFjchLCO4t1ztSAjKdzpL5rkHaWLiB8UDMHX7u2pq6lS99ZF3u47ppV77qWQlvRGvqIf7kKaYW1hwo2rVNyZKEJeLbPQ_L2-DAdPSeTl6fx6H6SmKxQfZJKObMyZ2mGwthKKpXN8owLkfO84HbGreUCzQxkDhwglqVI40sFhbDARDYkl7u98bjPFYZeL1ww2DTQYrcKOgpIWcoNKHag8V0IHq1eercA_6050xvj9NY4vXFFs1RvjdMqzl3sBSAYaKyH1rjwN5zF61VRRO5ux2H87dqh18E4bA1WzqPpddW5f5R-AMvEgfc</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Giapis, K.P.</creator><creator>Hwang, G.S.</creator><creator>Joubert, O.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20020701</creationdate><title>The role of mask charging in profile evolution and gate oxide degradation</title><author>Giapis, K.P. ; Hwang, G.S. ; Joubert, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-277bf74023e5cfd7883b4315541461fb1ff15ecba74a1aa1ff95215eda65fa053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gate oxide damage</topic><topic>Mask charging</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Plasma etching</topic><topic>Profile evolution</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giapis, K.P.</creatorcontrib><creatorcontrib>Hwang, G.S.</creatorcontrib><creatorcontrib>Joubert, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giapis, K.P.</au><au>Hwang, G.S.</au><au>Joubert, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of mask charging in profile evolution and gate oxide degradation</atitle><jtitle>Microelectronic engineering</jtitle><date>2002-07-01</date><risdate>2002</risdate><volume>61</volume><spage>835</spage><epage>847</epage><pages>835-847</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>Through detailed numerical simulations we investigate the role of insulator mask thickness in altering the fidelity of pattern transfer and causing damage to buried gate oxides during plasma etching. While a certain scaling with the mask aspect ratio is known to exist, we find that the mask thickness changes the contact time of ions with the local electric fields, which can perturb the ion trajectories leading to sidewall bowing and microtrenching. For very thick masks, the simulations reveal an ion focusing effect due to significant positive charging of the mask sidewalls which could lead to rounded profiles. The ion flux to the trench bottom is reduced with a concomitant decrease in charging damage, as suggested by the drop in net current to a buried gate electrically connected to the etched structure.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-9317(02)00459-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2002-07, Vol.61, p.835-847
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_27777975
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Electronics
Exact sciences and technology
Gate oxide damage
Mask charging
Microelectronic fabrication (materials and surfaces technology)
Plasma etching
Profile evolution
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title The role of mask charging in profile evolution and gate oxide degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20mask%20charging%20in%20profile%20evolution%20and%20gate%20oxide%20degradation&rft.jtitle=Microelectronic%20engineering&rft.au=Giapis,%20K.P.&rft.date=2002-07-01&rft.volume=61&rft.spage=835&rft.epage=847&rft.pages=835-847&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/S0167-9317(02)00459-8&rft_dat=%3Cproquest_cross%3E27777975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27777975&rft_id=info:pmid/&rft_els_id=S0167931702004598&rfr_iscdi=true