Theory Revision with Queries: DNF Formulas

The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This problem is considered here in the model of learning with equivalence and membership queries. A revision algorithm is considered efficient if the number of queries it makes is polynomial in the revi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2002-05, Vol.47 (2-3), p.257-295
Hauptverfasser: Goldsmith, Judy, Sloan, Robert H, Turán, György
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 2-3
container_start_page 257
container_title Machine learning
container_volume 47
creator Goldsmith, Judy
Sloan, Robert H
Turán, György
description The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This problem is considered here in the model of learning with equivalence and membership queries. A revision algorithm is considered efficient if the number of queries it makes is polynomial in the revision distance between the initial theory and the target theory, and polylogarithmic in the number of variables and the size of the initial theory. The revision distance is the minimal number of syntactic revision operations, such as the deletion or addition of literals, needed to obtain the target theory from the initial theory. Efficient revision algorithms are given for three classes of disjunctive normal form expressions: monotone k-DNF, monotone m-term DNF and unate two-term DNF. A negative result shows that some monotone DNF formulas are hard to revise.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1013641821190
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27777360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157618311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-15bef8433170a5b48d1806d548568730da4532c5a1af201ca7ac47721e470e2b3</originalsourceid><addsrcrecordid>eNpdkEFLxDAUhIMoWFfPXosHD0L0vSQviXtbdq0Ki6Ks55K2Kdul22jTKv57C3pyLnP5-BiGsXOEawQhbxZzBJRaoRWIt3DAEiQjOZCmQ5aAtcQ1CjpmJzHuAEBoqxN2tdn60H-nr_6ziU3o0q9m2KYvo-8bH-fp6ilLs9Dvx9bFU3ZUuzb6s7-esbfsbrN84Ovn-8flYs1LQWbgSIWvrZISDTgqlK3Qgq5IWdLWSKicIilKcuhqAVg640pljECvDHhRyBm7_PW-9-Fj9HHI900sfdu6zocx5sJMkRom8OIfuAtj303bckMGhJXTIT8eKE5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757028301</pqid></control><display><type>article</type><title>Theory Revision with Queries: DNF Formulas</title><source>SpringerLink Journals - AutoHoldings</source><creator>Goldsmith, Judy ; Sloan, Robert H ; Turán, György</creator><creatorcontrib>Goldsmith, Judy ; Sloan, Robert H ; Turán, György</creatorcontrib><description>The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This problem is considered here in the model of learning with equivalence and membership queries. A revision algorithm is considered efficient if the number of queries it makes is polynomial in the revision distance between the initial theory and the target theory, and polylogarithmic in the number of variables and the size of the initial theory. The revision distance is the minimal number of syntactic revision operations, such as the deletion or addition of literals, needed to obtain the target theory from the initial theory. Efficient revision algorithms are given for three classes of disjunctive normal form expressions: monotone k-DNF, monotone m-term DNF and unate two-term DNF. A negative result shows that some monotone DNF formulas are hard to revise.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1023/A:1013641821190</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Theory</subject><ispartof>Machine learning, 2002-05, Vol.47 (2-3), p.257-295</ispartof><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-15bef8433170a5b48d1806d548568730da4532c5a1af201ca7ac47721e470e2b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Goldsmith, Judy</creatorcontrib><creatorcontrib>Sloan, Robert H</creatorcontrib><creatorcontrib>Turán, György</creatorcontrib><title>Theory Revision with Queries: DNF Formulas</title><title>Machine learning</title><description>The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This problem is considered here in the model of learning with equivalence and membership queries. A revision algorithm is considered efficient if the number of queries it makes is polynomial in the revision distance between the initial theory and the target theory, and polylogarithmic in the number of variables and the size of the initial theory. The revision distance is the minimal number of syntactic revision operations, such as the deletion or addition of literals, needed to obtain the target theory from the initial theory. Efficient revision algorithms are given for three classes of disjunctive normal form expressions: monotone k-DNF, monotone m-term DNF and unate two-term DNF. A negative result shows that some monotone DNF formulas are hard to revise.[PUBLICATION ABSTRACT]</description><subject>Theory</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkEFLxDAUhIMoWFfPXosHD0L0vSQviXtbdq0Ki6Ks55K2Kdul22jTKv57C3pyLnP5-BiGsXOEawQhbxZzBJRaoRWIt3DAEiQjOZCmQ5aAtcQ1CjpmJzHuAEBoqxN2tdn60H-nr_6ziU3o0q9m2KYvo-8bH-fp6ilLs9Dvx9bFU3ZUuzb6s7-esbfsbrN84Ovn-8flYs1LQWbgSIWvrZISDTgqlK3Qgq5IWdLWSKicIilKcuhqAVg640pljECvDHhRyBm7_PW-9-Fj9HHI900sfdu6zocx5sJMkRom8OIfuAtj303bckMGhJXTIT8eKE5g</recordid><startdate>200205</startdate><enddate>200205</enddate><creator>Goldsmith, Judy</creator><creator>Sloan, Robert H</creator><creator>Turán, György</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>200205</creationdate><title>Theory Revision with Queries: DNF Formulas</title><author>Goldsmith, Judy ; Sloan, Robert H ; Turán, György</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-15bef8433170a5b48d1806d548568730da4532c5a1af201ca7ac47721e470e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldsmith, Judy</creatorcontrib><creatorcontrib>Sloan, Robert H</creatorcontrib><creatorcontrib>Turán, György</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldsmith, Judy</au><au>Sloan, Robert H</au><au>Turán, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory Revision with Queries: DNF Formulas</atitle><jtitle>Machine learning</jtitle><date>2002-05</date><risdate>2002</risdate><volume>47</volume><issue>2-3</issue><spage>257</spage><epage>295</epage><pages>257-295</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This problem is considered here in the model of learning with equivalence and membership queries. A revision algorithm is considered efficient if the number of queries it makes is polynomial in the revision distance between the initial theory and the target theory, and polylogarithmic in the number of variables and the size of the initial theory. The revision distance is the minimal number of syntactic revision operations, such as the deletion or addition of literals, needed to obtain the target theory from the initial theory. Efficient revision algorithms are given for three classes of disjunctive normal form expressions: monotone k-DNF, monotone m-term DNF and unate two-term DNF. A negative result shows that some monotone DNF formulas are hard to revise.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1013641821190</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2002-05, Vol.47 (2-3), p.257-295
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_miscellaneous_27777360
source SpringerLink Journals - AutoHoldings
subjects Theory
title Theory Revision with Queries: DNF Formulas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20Revision%20with%20Queries:%20DNF%20Formulas&rft.jtitle=Machine%20learning&rft.au=Goldsmith,%20Judy&rft.date=2002-05&rft.volume=47&rft.issue=2-3&rft.spage=257&rft.epage=295&rft.pages=257-295&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1023/A:1013641821190&rft_dat=%3Cproquest%3E2157618311%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757028301&rft_id=info:pmid/&rfr_iscdi=true