Verification and validation of neural networks for safety-critical applications
Onboard nonlinear models are a key enabling technology for virtual sensors, model-based control, reconfigurable control and model-based diagnostic algorithms. Before such models can be used in safety-critical applications, such as civilian aircraft, they must undergo extensive testing to verify that...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4794 vol.6 |
---|---|
container_issue | |
container_start_page | 4789 |
container_title | |
container_volume | 6 |
creator | Hull, J. Ward, D. Zakrzewski, R.R. |
description | Onboard nonlinear models are a key enabling technology for virtual sensors, model-based control, reconfigurable control and model-based diagnostic algorithms. Before such models can be used in safety-critical applications, such as civilian aircraft, they must undergo extensive testing to verify that there is no combination of inputs that will generate an undesirable output. This paper presents analysis techniques that can be used as part of a verification procedure for polynomial neural networks (PNNs) that are trained to replace lookup tables in a variety of safety-critical control applications. The technique builds on previous research that uses Lipschitz constants to provide guaranteed bounds on network output and error for all possible inputs without having to test the network at all possible input combinations. The focus of the work presented here is on static, feedforward, multilayer networks, with polynomial basis functions. The methods described form the basis of a software tool, which is in the process of being qualified by the FAA for use in verifying neural networks for safety-critical flight control applications. |
doi_str_mv | 10.1109/ACC.2002.1025416 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27777180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1025416</ieee_id><sourcerecordid>27777180</sourcerecordid><originalsourceid>FETCH-LOGICAL-i234t-d4e517c1d4a7bc5e48a46f68abe0f44b025fa83c39408072b7a6e9e9d0a702b63</originalsourceid><addsrcrecordid>eNpFkMtLw0AQxhcfYK3eBS-56C119pF9HEvwBYVe1GuYbHZhNU3ibqr0vzeQgnP5GOY3HzMfITcUVpSCeViX5YoBsBUFVggqT8iCcaXzQkt6Si5BaeCKGQ1nZAFK8JxKai7IZUqfANQYCQuy_XAx-GBxDH2XYddkP9iGZm57n3VuH7GdZPzt41fKfB-zhN6Nh9zGME6LbYbD0B4d0hU599gmd33UJXl_enwrX_LN9vm1XG_ywLgY80a4gipLG4GqtoUTGoX0UmPtwAtRTw951NxyI0CDYrVC6YwzDaACVku-JPez7xD7771LY7ULybq2xc71-1QxNRWdAliSuyOIaTrWR-xsSNUQww7joaKFNKyQeuJuZy445_7Hc7L8D9IZau4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27777180</pqid></control><display><type>conference_proceeding</type><title>Verification and validation of neural networks for safety-critical applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hull, J. ; Ward, D. ; Zakrzewski, R.R.</creator><creatorcontrib>Hull, J. ; Ward, D. ; Zakrzewski, R.R.</creatorcontrib><description>Onboard nonlinear models are a key enabling technology for virtual sensors, model-based control, reconfigurable control and model-based diagnostic algorithms. Before such models can be used in safety-critical applications, such as civilian aircraft, they must undergo extensive testing to verify that there is no combination of inputs that will generate an undesirable output. This paper presents analysis techniques that can be used as part of a verification procedure for polynomial neural networks (PNNs) that are trained to replace lookup tables in a variety of safety-critical control applications. The technique builds on previous research that uses Lipschitz constants to provide guaranteed bounds on network output and error for all possible inputs without having to test the network at all possible input combinations. The focus of the work presented here is on static, feedforward, multilayer networks, with polynomial basis functions. The methods described form the basis of a software tool, which is in the process of being qualified by the FAA for use in verifying neural networks for safety-critical flight control applications.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 0780372980</identifier><identifier>ISBN: 9780780372986</identifier><identifier>EISSN: 2378-5861</identifier><identifier>DOI: 10.1109/ACC.2002.1025416</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Aerospace control ; Aircraft ; Application software ; Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; FAA ; Multi-layer neural network ; Neural networks ; Polynomials ; Software tools ; Table lookup ; Testing</subject><ispartof>2002 American Control Conference. Proceedings., Vol. 6, 2002, Vol.6, p.4789-4794 vol.6</ispartof><rights>2004 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1025416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1025416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15692568$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hull, J.</creatorcontrib><creatorcontrib>Ward, D.</creatorcontrib><creatorcontrib>Zakrzewski, R.R.</creatorcontrib><title>Verification and validation of neural networks for safety-critical applications</title><title>2002 American Control Conference. Proceedings., Vol. 6</title><addtitle>ACC</addtitle><description>Onboard nonlinear models are a key enabling technology for virtual sensors, model-based control, reconfigurable control and model-based diagnostic algorithms. Before such models can be used in safety-critical applications, such as civilian aircraft, they must undergo extensive testing to verify that there is no combination of inputs that will generate an undesirable output. This paper presents analysis techniques that can be used as part of a verification procedure for polynomial neural networks (PNNs) that are trained to replace lookup tables in a variety of safety-critical control applications. The technique builds on previous research that uses Lipschitz constants to provide guaranteed bounds on network output and error for all possible inputs without having to test the network at all possible input combinations. The focus of the work presented here is on static, feedforward, multilayer networks, with polynomial basis functions. The methods described form the basis of a software tool, which is in the process of being qualified by the FAA for use in verifying neural networks for safety-critical flight control applications.</description><subject>Aerospace control</subject><subject>Aircraft</subject><subject>Application software</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>FAA</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Software tools</subject><subject>Table lookup</subject><subject>Testing</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>0780372980</isbn><isbn>9780780372986</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtLw0AQxhcfYK3eBS-56C119pF9HEvwBYVe1GuYbHZhNU3ibqr0vzeQgnP5GOY3HzMfITcUVpSCeViX5YoBsBUFVggqT8iCcaXzQkt6Si5BaeCKGQ1nZAFK8JxKai7IZUqfANQYCQuy_XAx-GBxDH2XYddkP9iGZm57n3VuH7GdZPzt41fKfB-zhN6Nh9zGME6LbYbD0B4d0hU599gmd33UJXl_enwrX_LN9vm1XG_ywLgY80a4gipLG4GqtoUTGoX0UmPtwAtRTw951NxyI0CDYrVC6YwzDaACVku-JPez7xD7771LY7ULybq2xc71-1QxNRWdAliSuyOIaTrWR-xsSNUQww7joaKFNKyQeuJuZy445_7Hc7L8D9IZau4</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Hull, J.</creator><creator>Ward, D.</creator><creator>Zakrzewski, R.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2002</creationdate><title>Verification and validation of neural networks for safety-critical applications</title><author>Hull, J. ; Ward, D. ; Zakrzewski, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i234t-d4e517c1d4a7bc5e48a46f68abe0f44b025fa83c39408072b7a6e9e9d0a702b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aerospace control</topic><topic>Aircraft</topic><topic>Application software</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>FAA</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Software tools</topic><topic>Table lookup</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hull, J.</creatorcontrib><creatorcontrib>Ward, D.</creatorcontrib><creatorcontrib>Zakrzewski, R.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hull, J.</au><au>Ward, D.</au><au>Zakrzewski, R.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Verification and validation of neural networks for safety-critical applications</atitle><btitle>2002 American Control Conference. Proceedings., Vol. 6</btitle><stitle>ACC</stitle><date>2002</date><risdate>2002</risdate><volume>6</volume><spage>4789</spage><epage>4794 vol.6</epage><pages>4789-4794 vol.6</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>0780372980</isbn><isbn>9780780372986</isbn><abstract>Onboard nonlinear models are a key enabling technology for virtual sensors, model-based control, reconfigurable control and model-based diagnostic algorithms. Before such models can be used in safety-critical applications, such as civilian aircraft, they must undergo extensive testing to verify that there is no combination of inputs that will generate an undesirable output. This paper presents analysis techniques that can be used as part of a verification procedure for polynomial neural networks (PNNs) that are trained to replace lookup tables in a variety of safety-critical control applications. The technique builds on previous research that uses Lipschitz constants to provide guaranteed bounds on network output and error for all possible inputs without having to test the network at all possible input combinations. The focus of the work presented here is on static, feedforward, multilayer networks, with polynomial basis functions. The methods described form the basis of a software tool, which is in the process of being qualified by the FAA for use in verifying neural networks for safety-critical flight control applications.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ACC.2002.1025416</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2002 American Control Conference. Proceedings., Vol. 6, 2002, Vol.6, p.4789-4794 vol.6 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_proquest_miscellaneous_27777180 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aerospace control Aircraft Application software Applied sciences Computer science control theory systems Control theory. Systems Exact sciences and technology FAA Multi-layer neural network Neural networks Polynomials Software tools Table lookup Testing |
title | Verification and validation of neural networks for safety-critical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Verification%20and%20validation%20of%20neural%20networks%20for%20safety-critical%20applications&rft.btitle=2002%20American%20Control%20Conference.%20Proceedings.,%20Vol.%206&rft.au=Hull,%20J.&rft.date=2002&rft.volume=6&rft.spage=4789&rft.epage=4794%20vol.6&rft.pages=4789-4794%20vol.6&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=0780372980&rft.isbn_list=9780780372986&rft_id=info:doi/10.1109/ACC.2002.1025416&rft_dat=%3Cproquest_6IE%3E27777180%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27777180&rft_id=info:pmid/&rft_ieee_id=1025416&rfr_iscdi=true |