The microstructure of ZrO2-Ni-Si3N4 diffusion bonds

In this paper the results are presented of work dealing with the microstructure of ZrO2-Ni-Si3N4 diffusion bonds. Joints were made at 1050°C with bonding times between 22.5 and 360 minutes. The interfacial structure was studied using optical microscopy, scanning electron microscopy and transmission...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2002-03, Vol.37 (6), p.1179-1182
Hauptverfasser: VEGTER, R. H, MAEDA, M, NAKA, M, DEN OUDEN, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1182
container_issue 6
container_start_page 1179
container_title Journal of materials science
container_volume 37
creator VEGTER, R. H
MAEDA, M
NAKA, M
DEN OUDEN, G
description In this paper the results are presented of work dealing with the microstructure of ZrO2-Ni-Si3N4 diffusion bonds. Joints were made at 1050°C with bonding times between 22.5 and 360 minutes. The interfacial structure was studied using optical microscopy, scanning electron microscopy and transmission electron microscopy. The element concentrations in the joint were determined by electron probe microanalysis. It was found that at the ZrO2-Ni interface no reactions take place, whereas at the Si3N4-Ni interface decomposition of Si3N4 occurs, resulting in a solid solution of Si in Ni and porosity due to the recombination of N to N2.
doi_str_mv 10.1023/A:1014367405851
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27774998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27193500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7eca9f7995420352a42c6ee0114abd8e680f5e2324b80f6344a69d6936f332e23</originalsourceid><addsrcrecordid>eNqNj71PwzAUxC0EEqUws0ZCsAWe3_NHzFZVfElVO1AWlsh1bJEqTYqdDPz3BNGJielOup_udIxdcrjlgHQ3u-fABSktQBaSH7EJl5pyUQAdswkAYo5C8VN2ltIWAKRGPmG0_vDZrnaxS30cXD9En3Uhe48rzJd1_lrTUmRVHcKQ6q7NNl1bpXN2EmyT_MVBp-zt8WE9f84Xq6eX-WyRO-Kmz7V31gRtjBQIJNEKdMp74FzYTVV4VUCQHgnFZnSKhLDKVMqQCkQ4BlN289u7j93n4FNf7urkfNPY1ndDKlFrLYwp_gFyQxJgBK_-gNtuiO14okRUgKIQ6mf3-kDZ5GwTom1dncp9rHc2fpWcpB7_GPoGsoNrqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260248462</pqid></control><display><type>article</type><title>The microstructure of ZrO2-Ni-Si3N4 diffusion bonds</title><source>Springer Nature - Complete Springer Journals</source><creator>VEGTER, R. H ; MAEDA, M ; NAKA, M ; DEN OUDEN, G</creator><contributor>WCA</contributor><creatorcontrib>VEGTER, R. H ; MAEDA, M ; NAKA, M ; DEN OUDEN, G ; WCA</creatorcontrib><description>In this paper the results are presented of work dealing with the microstructure of ZrO2-Ni-Si3N4 diffusion bonds. Joints were made at 1050°C with bonding times between 22.5 and 360 minutes. The interfacial structure was studied using optical microscopy, scanning electron microscopy and transmission electron microscopy. The element concentrations in the joint were determined by electron probe microanalysis. It was found that at the ZrO2-Ni interface no reactions take place, whereas at the Si3N4-Ni interface decomposition of Si3N4 occurs, resulting in a solid solution of Si in Ni and porosity due to the recombination of N to N2.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/A:1014367405851</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Bonded joints ; Building materials. Ceramics. Glasses ; Ceramic industries ; Chemical industry and chemicals ; Decomposition reactions ; Diffusion welding ; Electron probe microanalysis ; Electron probes ; Electrons ; Exact sciences and technology ; Materials science ; Microscopes ; Microscopy ; Microstructure ; Miscellaneous ; Optical microscopy ; Porosity ; Scanning electron microscopy ; Silicon nitride ; Solid solutions ; Technical ceramics ; Transmission electron microscopy ; Zirconium dioxide</subject><ispartof>Journal of materials science, 2002-03, Vol.37 (6), p.1179-1182</ispartof><rights>2002 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2002). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7eca9f7995420352a42c6ee0114abd8e680f5e2324b80f6344a69d6936f332e23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13570359$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>WCA</contributor><creatorcontrib>VEGTER, R. H</creatorcontrib><creatorcontrib>MAEDA, M</creatorcontrib><creatorcontrib>NAKA, M</creatorcontrib><creatorcontrib>DEN OUDEN, G</creatorcontrib><title>The microstructure of ZrO2-Ni-Si3N4 diffusion bonds</title><title>Journal of materials science</title><description>In this paper the results are presented of work dealing with the microstructure of ZrO2-Ni-Si3N4 diffusion bonds. Joints were made at 1050°C with bonding times between 22.5 and 360 minutes. The interfacial structure was studied using optical microscopy, scanning electron microscopy and transmission electron microscopy. The element concentrations in the joint were determined by electron probe microanalysis. It was found that at the ZrO2-Ni interface no reactions take place, whereas at the Si3N4-Ni interface decomposition of Si3N4 occurs, resulting in a solid solution of Si in Ni and porosity due to the recombination of N to N2.</description><subject>Applied sciences</subject><subject>Bonded joints</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>Decomposition reactions</subject><subject>Diffusion welding</subject><subject>Electron probe microanalysis</subject><subject>Electron probes</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Miscellaneous</subject><subject>Optical microscopy</subject><subject>Porosity</subject><subject>Scanning electron microscopy</subject><subject>Silicon nitride</subject><subject>Solid solutions</subject><subject>Technical ceramics</subject><subject>Transmission electron microscopy</subject><subject>Zirconium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNj71PwzAUxC0EEqUws0ZCsAWe3_NHzFZVfElVO1AWlsh1bJEqTYqdDPz3BNGJielOup_udIxdcrjlgHQ3u-fABSktQBaSH7EJl5pyUQAdswkAYo5C8VN2ltIWAKRGPmG0_vDZrnaxS30cXD9En3Uhe48rzJd1_lrTUmRVHcKQ6q7NNl1bpXN2EmyT_MVBp-zt8WE9f84Xq6eX-WyRO-Kmz7V31gRtjBQIJNEKdMp74FzYTVV4VUCQHgnFZnSKhLDKVMqQCkQ4BlN289u7j93n4FNf7urkfNPY1ndDKlFrLYwp_gFyQxJgBK_-gNtuiO14okRUgKIQ6mf3-kDZ5GwTom1dncp9rHc2fpWcpB7_GPoGsoNrqg</recordid><startdate>20020315</startdate><enddate>20020315</enddate><creator>VEGTER, R. H</creator><creator>MAEDA, M</creator><creator>NAKA, M</creator><creator>DEN OUDEN, G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20020315</creationdate><title>The microstructure of ZrO2-Ni-Si3N4 diffusion bonds</title><author>VEGTER, R. H ; MAEDA, M ; NAKA, M ; DEN OUDEN, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7eca9f7995420352a42c6ee0114abd8e680f5e2324b80f6344a69d6936f332e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Bonded joints</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>Decomposition reactions</topic><topic>Diffusion welding</topic><topic>Electron probe microanalysis</topic><topic>Electron probes</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Miscellaneous</topic><topic>Optical microscopy</topic><topic>Porosity</topic><topic>Scanning electron microscopy</topic><topic>Silicon nitride</topic><topic>Solid solutions</topic><topic>Technical ceramics</topic><topic>Transmission electron microscopy</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VEGTER, R. H</creatorcontrib><creatorcontrib>MAEDA, M</creatorcontrib><creatorcontrib>NAKA, M</creatorcontrib><creatorcontrib>DEN OUDEN, G</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VEGTER, R. H</au><au>MAEDA, M</au><au>NAKA, M</au><au>DEN OUDEN, G</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The microstructure of ZrO2-Ni-Si3N4 diffusion bonds</atitle><jtitle>Journal of materials science</jtitle><date>2002-03-15</date><risdate>2002</risdate><volume>37</volume><issue>6</issue><spage>1179</spage><epage>1182</epage><pages>1179-1182</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>In this paper the results are presented of work dealing with the microstructure of ZrO2-Ni-Si3N4 diffusion bonds. Joints were made at 1050°C with bonding times between 22.5 and 360 minutes. The interfacial structure was studied using optical microscopy, scanning electron microscopy and transmission electron microscopy. The element concentrations in the joint were determined by electron probe microanalysis. It was found that at the ZrO2-Ni interface no reactions take place, whereas at the Si3N4-Ni interface decomposition of Si3N4 occurs, resulting in a solid solution of Si in Ni and porosity due to the recombination of N to N2.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1014367405851</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2002-03, Vol.37 (6), p.1179-1182
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_27774998
source Springer Nature - Complete Springer Journals
subjects Applied sciences
Bonded joints
Building materials. Ceramics. Glasses
Ceramic industries
Chemical industry and chemicals
Decomposition reactions
Diffusion welding
Electron probe microanalysis
Electron probes
Electrons
Exact sciences and technology
Materials science
Microscopes
Microscopy
Microstructure
Miscellaneous
Optical microscopy
Porosity
Scanning electron microscopy
Silicon nitride
Solid solutions
Technical ceramics
Transmission electron microscopy
Zirconium dioxide
title The microstructure of ZrO2-Ni-Si3N4 diffusion bonds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20microstructure%20of%20ZrO2-Ni-Si3N4%20diffusion%20bonds&rft.jtitle=Journal%20of%20materials%20science&rft.au=VEGTER,%20R.%20H&rft.date=2002-03-15&rft.volume=37&rft.issue=6&rft.spage=1179&rft.epage=1182&rft.pages=1179-1182&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/A:1014367405851&rft_dat=%3Cproquest_pasca%3E27193500%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260248462&rft_id=info:pmid/&rfr_iscdi=true