Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome
Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and c...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. General subjects 2023-05, Vol.1867 (5), p.130328-130328, Article 130328 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130328 |
---|---|
container_issue | 5 |
container_start_page | 130328 |
container_title | Biochimica et biophysica acta. General subjects |
container_volume | 1867 |
creator | Mukherjee, Soumyajit Das, Shubhojit Bedi, Minakshi Vadupu, Lavanya Ball, Writoban Basu Ghosh, Alok |
description | Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.
•Yeast SYM1 deletion shows mitochondrial respiratory and phospholipids defects.•Decrease of mitochondrial PC/PE in sym1∆ cells.•Methylglyoxal restores these defects by inducing Gpd1 enzyme activity. |
doi_str_mv | 10.1016/j.bbagen.2023.130328 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2777406345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304416523000260</els_id><sourcerecordid>2777406345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ebd1ecf50598935be4b7f11abe9a0e4f0ca5e8de9f28908da206c4f7afb794c93</originalsourceid><addsrcrecordid>eNp9kD1PHDEQhq2IKFyAfxBFLmn24q_9apAQJCQShIbUltcecz5514ftQ9mWXx6TJSkomMIjWc_M6H0Q-kTJmhLafNmuh0Hdw7RmhPE15YSz7h1a0a5lVUdIc4BWhBNRCdrUh-hjSltSqu7rD-iQN21PO9as0NMN5M3s7_0cfitfjWCcymDw1c5QrHR2jyq7MOEIKYfy4LwBPLoc9CZMJjrlsQELOifsJqzwDCplPAYDHgf7irz8eV7onYe_K9NcvsMIx-i9VT7ByUs_Qr--fb27-F5d3179uDi_rjRvWK5gMBS0rUuEruf1AGJoLaVqgF4REJZoVUNnoLes60lnFCONFrZVdmh7oXt-hE6XvbsYHvYljxxd0uC9miDsk2Rt2wrScFEXVCyojiGlCFbuohtVnCUl8tm-3MrFvny2Lxf7Zezzy4X9UEz-H_qnuwBnCwAl56ODKJN2MOliPRaH0gT39oU_fBma7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777406345</pqid></control><display><type>article</type><title>Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mukherjee, Soumyajit ; Das, Shubhojit ; Bedi, Minakshi ; Vadupu, Lavanya ; Ball, Writoban Basu ; Ghosh, Alok</creator><creatorcontrib>Mukherjee, Soumyajit ; Das, Shubhojit ; Bedi, Minakshi ; Vadupu, Lavanya ; Ball, Writoban Basu ; Ghosh, Alok</creatorcontrib><description>Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.
•Yeast SYM1 deletion shows mitochondrial respiratory and phospholipids defects.•Decrease of mitochondrial PC/PE in sym1∆ cells.•Methylglyoxal restores these defects by inducing Gpd1 enzyme activity.</description><identifier>ISSN: 0304-4165</identifier><identifier>EISSN: 1872-8006</identifier><identifier>DOI: 10.1016/j.bbagen.2023.130328</identifier><identifier>PMID: 36791826</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism ; Glycerol-3-phosphate dehydrogenase 1 ; Humans ; Mammals - metabolism ; Membrane Proteins - metabolism ; Methylglyoxal ; Mitochondrial respiratory chain ; Phospholipids ; Pyruvaldehyde - metabolism ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; SYM1 ; Zebrafish - metabolism</subject><ispartof>Biochimica et biophysica acta. General subjects, 2023-05, Vol.1867 (5), p.130328-130328, Article 130328</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ebd1ecf50598935be4b7f11abe9a0e4f0ca5e8de9f28908da206c4f7afb794c93</citedby><cites>FETCH-LOGICAL-c362t-ebd1ecf50598935be4b7f11abe9a0e4f0ca5e8de9f28908da206c4f7afb794c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304416523000260$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36791826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Soumyajit</creatorcontrib><creatorcontrib>Das, Shubhojit</creatorcontrib><creatorcontrib>Bedi, Minakshi</creatorcontrib><creatorcontrib>Vadupu, Lavanya</creatorcontrib><creatorcontrib>Ball, Writoban Basu</creatorcontrib><creatorcontrib>Ghosh, Alok</creatorcontrib><title>Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome</title><title>Biochimica et biophysica acta. General subjects</title><addtitle>Biochim Biophys Acta Gen Subj</addtitle><description>Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.
•Yeast SYM1 deletion shows mitochondrial respiratory and phospholipids defects.•Decrease of mitochondrial PC/PE in sym1∆ cells.•Methylglyoxal restores these defects by inducing Gpd1 enzyme activity.</description><subject>Animals</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism</subject><subject>Glycerol-3-phosphate dehydrogenase 1</subject><subject>Humans</subject><subject>Mammals - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Methylglyoxal</subject><subject>Mitochondrial respiratory chain</subject><subject>Phospholipids</subject><subject>Pyruvaldehyde - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>SYM1</subject><subject>Zebrafish - metabolism</subject><issn>0304-4165</issn><issn>1872-8006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PHDEQhq2IKFyAfxBFLmn24q_9apAQJCQShIbUltcecz5514ftQ9mWXx6TJSkomMIjWc_M6H0Q-kTJmhLafNmuh0Hdw7RmhPE15YSz7h1a0a5lVUdIc4BWhBNRCdrUh-hjSltSqu7rD-iQN21PO9as0NMN5M3s7_0cfitfjWCcymDw1c5QrHR2jyq7MOEIKYfy4LwBPLoc9CZMJjrlsQELOifsJqzwDCplPAYDHgf7irz8eV7onYe_K9NcvsMIx-i9VT7ByUs_Qr--fb27-F5d3179uDi_rjRvWK5gMBS0rUuEruf1AGJoLaVqgF4REJZoVUNnoLes60lnFCONFrZVdmh7oXt-hE6XvbsYHvYljxxd0uC9miDsk2Rt2wrScFEXVCyojiGlCFbuohtVnCUl8tm-3MrFvny2Lxf7Zezzy4X9UEz-H_qnuwBnCwAl56ODKJN2MOliPRaH0gT39oU_fBma7g</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Mukherjee, Soumyajit</creator><creator>Das, Shubhojit</creator><creator>Bedi, Minakshi</creator><creator>Vadupu, Lavanya</creator><creator>Ball, Writoban Basu</creator><creator>Ghosh, Alok</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202305</creationdate><title>Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome</title><author>Mukherjee, Soumyajit ; Das, Shubhojit ; Bedi, Minakshi ; Vadupu, Lavanya ; Ball, Writoban Basu ; Ghosh, Alok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ebd1ecf50598935be4b7f11abe9a0e4f0ca5e8de9f28908da206c4f7afb794c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism</topic><topic>Glycerol-3-phosphate dehydrogenase 1</topic><topic>Humans</topic><topic>Mammals - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Methylglyoxal</topic><topic>Mitochondrial respiratory chain</topic><topic>Phospholipids</topic><topic>Pyruvaldehyde - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>SYM1</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Soumyajit</creatorcontrib><creatorcontrib>Das, Shubhojit</creatorcontrib><creatorcontrib>Bedi, Minakshi</creatorcontrib><creatorcontrib>Vadupu, Lavanya</creatorcontrib><creatorcontrib>Ball, Writoban Basu</creatorcontrib><creatorcontrib>Ghosh, Alok</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. General subjects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Soumyajit</au><au>Das, Shubhojit</au><au>Bedi, Minakshi</au><au>Vadupu, Lavanya</au><au>Ball, Writoban Basu</au><au>Ghosh, Alok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome</atitle><jtitle>Biochimica et biophysica acta. General subjects</jtitle><addtitle>Biochim Biophys Acta Gen Subj</addtitle><date>2023-05</date><risdate>2023</risdate><volume>1867</volume><issue>5</issue><spage>130328</spage><epage>130328</epage><pages>130328-130328</pages><artnum>130328</artnum><issn>0304-4165</issn><eissn>1872-8006</eissn><abstract>Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.
•Yeast SYM1 deletion shows mitochondrial respiratory and phospholipids defects.•Decrease of mitochondrial PC/PE in sym1∆ cells.•Methylglyoxal restores these defects by inducing Gpd1 enzyme activity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36791826</pmid><doi>10.1016/j.bbagen.2023.130328</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4165 |
ispartof | Biochimica et biophysica acta. General subjects, 2023-05, Vol.1867 (5), p.130328-130328, Article 130328 |
issn | 0304-4165 1872-8006 |
language | eng |
recordid | cdi_proquest_miscellaneous_2777406345 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism Glycerol-3-phosphate dehydrogenase 1 Humans Mammals - metabolism Membrane Proteins - metabolism Methylglyoxal Mitochondrial respiratory chain Phospholipids Pyruvaldehyde - metabolism Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism SYM1 Zebrafish - metabolism |
title | Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methylglyoxal-mediated%20Gpd1%20activation%20restores%20the%20mitochondrial%20defects%20in%20a%20yeast%20model%20of%20mitochondrial%20DNA%20depletion%20syndrome&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20General%20subjects&rft.au=Mukherjee,%20Soumyajit&rft.date=2023-05&rft.volume=1867&rft.issue=5&rft.spage=130328&rft.epage=130328&rft.pages=130328-130328&rft.artnum=130328&rft.issn=0304-4165&rft.eissn=1872-8006&rft_id=info:doi/10.1016/j.bbagen.2023.130328&rft_dat=%3Cproquest_cross%3E2777406345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777406345&rft_id=info:pmid/36791826&rft_els_id=S0304416523000260&rfr_iscdi=true |