Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome

Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. General subjects 2023-05, Vol.1867 (5), p.130328-130328, Article 130328
Hauptverfasser: Mukherjee, Soumyajit, Das, Shubhojit, Bedi, Minakshi, Vadupu, Lavanya, Ball, Writoban Basu, Ghosh, Alok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130328
container_issue 5
container_start_page 130328
container_title Biochimica et biophysica acta. General subjects
container_volume 1867
creator Mukherjee, Soumyajit
Das, Shubhojit
Bedi, Minakshi
Vadupu, Lavanya
Ball, Writoban Basu
Ghosh, Alok
description Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects. •Yeast SYM1 deletion shows mitochondrial respiratory and phospholipids defects.•Decrease of mitochondrial PC/PE in sym1∆ cells.•Methylglyoxal restores these defects by inducing Gpd1 enzyme activity.
doi_str_mv 10.1016/j.bbagen.2023.130328
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2777406345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304416523000260</els_id><sourcerecordid>2777406345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ebd1ecf50598935be4b7f11abe9a0e4f0ca5e8de9f28908da206c4f7afb794c93</originalsourceid><addsrcrecordid>eNp9kD1PHDEQhq2IKFyAfxBFLmn24q_9apAQJCQShIbUltcecz5514ftQ9mWXx6TJSkomMIjWc_M6H0Q-kTJmhLafNmuh0Hdw7RmhPE15YSz7h1a0a5lVUdIc4BWhBNRCdrUh-hjSltSqu7rD-iQN21PO9as0NMN5M3s7_0cfitfjWCcymDw1c5QrHR2jyq7MOEIKYfy4LwBPLoc9CZMJjrlsQELOifsJqzwDCplPAYDHgf7irz8eV7onYe_K9NcvsMIx-i9VT7ByUs_Qr--fb27-F5d3179uDi_rjRvWK5gMBS0rUuEruf1AGJoLaVqgF4REJZoVUNnoLes60lnFCONFrZVdmh7oXt-hE6XvbsYHvYljxxd0uC9miDsk2Rt2wrScFEXVCyojiGlCFbuohtVnCUl8tm-3MrFvny2Lxf7Zezzy4X9UEz-H_qnuwBnCwAl56ODKJN2MOliPRaH0gT39oU_fBma7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777406345</pqid></control><display><type>article</type><title>Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mukherjee, Soumyajit ; Das, Shubhojit ; Bedi, Minakshi ; Vadupu, Lavanya ; Ball, Writoban Basu ; Ghosh, Alok</creator><creatorcontrib>Mukherjee, Soumyajit ; Das, Shubhojit ; Bedi, Minakshi ; Vadupu, Lavanya ; Ball, Writoban Basu ; Ghosh, Alok</creatorcontrib><description>Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects. •Yeast SYM1 deletion shows mitochondrial respiratory and phospholipids defects.•Decrease of mitochondrial PC/PE in sym1∆ cells.•Methylglyoxal restores these defects by inducing Gpd1 enzyme activity.</description><identifier>ISSN: 0304-4165</identifier><identifier>EISSN: 1872-8006</identifier><identifier>DOI: 10.1016/j.bbagen.2023.130328</identifier><identifier>PMID: 36791826</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism ; Glycerol-3-phosphate dehydrogenase 1 ; Humans ; Mammals - metabolism ; Membrane Proteins - metabolism ; Methylglyoxal ; Mitochondrial respiratory chain ; Phospholipids ; Pyruvaldehyde - metabolism ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; SYM1 ; Zebrafish - metabolism</subject><ispartof>Biochimica et biophysica acta. General subjects, 2023-05, Vol.1867 (5), p.130328-130328, Article 130328</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ebd1ecf50598935be4b7f11abe9a0e4f0ca5e8de9f28908da206c4f7afb794c93</citedby><cites>FETCH-LOGICAL-c362t-ebd1ecf50598935be4b7f11abe9a0e4f0ca5e8de9f28908da206c4f7afb794c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304416523000260$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36791826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Soumyajit</creatorcontrib><creatorcontrib>Das, Shubhojit</creatorcontrib><creatorcontrib>Bedi, Minakshi</creatorcontrib><creatorcontrib>Vadupu, Lavanya</creatorcontrib><creatorcontrib>Ball, Writoban Basu</creatorcontrib><creatorcontrib>Ghosh, Alok</creatorcontrib><title>Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome</title><title>Biochimica et biophysica acta. General subjects</title><addtitle>Biochim Biophys Acta Gen Subj</addtitle><description>Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects. •Yeast SYM1 deletion shows mitochondrial respiratory and phospholipids defects.•Decrease of mitochondrial PC/PE in sym1∆ cells.•Methylglyoxal restores these defects by inducing Gpd1 enzyme activity.</description><subject>Animals</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism</subject><subject>Glycerol-3-phosphate dehydrogenase 1</subject><subject>Humans</subject><subject>Mammals - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Methylglyoxal</subject><subject>Mitochondrial respiratory chain</subject><subject>Phospholipids</subject><subject>Pyruvaldehyde - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>SYM1</subject><subject>Zebrafish - metabolism</subject><issn>0304-4165</issn><issn>1872-8006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PHDEQhq2IKFyAfxBFLmn24q_9apAQJCQShIbUltcecz5514ftQ9mWXx6TJSkomMIjWc_M6H0Q-kTJmhLafNmuh0Hdw7RmhPE15YSz7h1a0a5lVUdIc4BWhBNRCdrUh-hjSltSqu7rD-iQN21PO9as0NMN5M3s7_0cfitfjWCcymDw1c5QrHR2jyq7MOEIKYfy4LwBPLoc9CZMJjrlsQELOifsJqzwDCplPAYDHgf7irz8eV7onYe_K9NcvsMIx-i9VT7ByUs_Qr--fb27-F5d3179uDi_rjRvWK5gMBS0rUuEruf1AGJoLaVqgF4REJZoVUNnoLes60lnFCONFrZVdmh7oXt-hE6XvbsYHvYljxxd0uC9miDsk2Rt2wrScFEXVCyojiGlCFbuohtVnCUl8tm-3MrFvny2Lxf7Zezzy4X9UEz-H_qnuwBnCwAl56ODKJN2MOliPRaH0gT39oU_fBma7g</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Mukherjee, Soumyajit</creator><creator>Das, Shubhojit</creator><creator>Bedi, Minakshi</creator><creator>Vadupu, Lavanya</creator><creator>Ball, Writoban Basu</creator><creator>Ghosh, Alok</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202305</creationdate><title>Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome</title><author>Mukherjee, Soumyajit ; Das, Shubhojit ; Bedi, Minakshi ; Vadupu, Lavanya ; Ball, Writoban Basu ; Ghosh, Alok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ebd1ecf50598935be4b7f11abe9a0e4f0ca5e8de9f28908da206c4f7afb794c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism</topic><topic>Glycerol-3-phosphate dehydrogenase 1</topic><topic>Humans</topic><topic>Mammals - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Methylglyoxal</topic><topic>Mitochondrial respiratory chain</topic><topic>Phospholipids</topic><topic>Pyruvaldehyde - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>SYM1</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Soumyajit</creatorcontrib><creatorcontrib>Das, Shubhojit</creatorcontrib><creatorcontrib>Bedi, Minakshi</creatorcontrib><creatorcontrib>Vadupu, Lavanya</creatorcontrib><creatorcontrib>Ball, Writoban Basu</creatorcontrib><creatorcontrib>Ghosh, Alok</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. General subjects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Soumyajit</au><au>Das, Shubhojit</au><au>Bedi, Minakshi</au><au>Vadupu, Lavanya</au><au>Ball, Writoban Basu</au><au>Ghosh, Alok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome</atitle><jtitle>Biochimica et biophysica acta. General subjects</jtitle><addtitle>Biochim Biophys Acta Gen Subj</addtitle><date>2023-05</date><risdate>2023</risdate><volume>1867</volume><issue>5</issue><spage>130328</spage><epage>130328</epage><pages>130328-130328</pages><artnum>130328</artnum><issn>0304-4165</issn><eissn>1872-8006</eissn><abstract>Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects. •Yeast SYM1 deletion shows mitochondrial respiratory and phospholipids defects.•Decrease of mitochondrial PC/PE in sym1∆ cells.•Methylglyoxal restores these defects by inducing Gpd1 enzyme activity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36791826</pmid><doi>10.1016/j.bbagen.2023.130328</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4165
ispartof Biochimica et biophysica acta. General subjects, 2023-05, Vol.1867 (5), p.130328-130328, Article 130328
issn 0304-4165
1872-8006
language eng
recordid cdi_proquest_miscellaneous_2777406345
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism
Glycerol-3-phosphate dehydrogenase 1
Humans
Mammals - metabolism
Membrane Proteins - metabolism
Methylglyoxal
Mitochondrial respiratory chain
Phospholipids
Pyruvaldehyde - metabolism
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
SYM1
Zebrafish - metabolism
title Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methylglyoxal-mediated%20Gpd1%20activation%20restores%20the%20mitochondrial%20defects%20in%20a%20yeast%20model%20of%20mitochondrial%20DNA%20depletion%20syndrome&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20General%20subjects&rft.au=Mukherjee,%20Soumyajit&rft.date=2023-05&rft.volume=1867&rft.issue=5&rft.spage=130328&rft.epage=130328&rft.pages=130328-130328&rft.artnum=130328&rft.issn=0304-4165&rft.eissn=1872-8006&rft_id=info:doi/10.1016/j.bbagen.2023.130328&rft_dat=%3Cproquest_cross%3E2777406345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777406345&rft_id=info:pmid/36791826&rft_els_id=S0304416523000260&rfr_iscdi=true