The influence of multiple lake interactions upon lake-effect storms

Studies have shown that during prolonged cold air outbreaks, collective lake disturbances can originate from the organization of individual lake-scale disturbances. These collective lake disturbances may, through scale interactions, alter the behavior of the contributing individual lake-scale distur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2002-06, Vol.130 (6), p.1510-1530
Hauptverfasser: MANN, Greg E, WAGENMAKER, Richard B, SOUSOUNIS, Peter J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1530
container_issue 6
container_start_page 1510
container_title Monthly weather review
container_volume 130
creator MANN, Greg E
WAGENMAKER, Richard B
SOUSOUNIS, Peter J
description Studies have shown that during prolonged cold air outbreaks, collective lake disturbances can originate from the organization of individual lake-scale disturbances. These collective lake disturbances may, through scale interactions, alter the behavior of the contributing individual lake-scale disturbances and the embedded lake-effect storms. Factor separation decomposition of the Great Lakes system indicates that various interactions among lake-scale processes contribute to the overall development of the regional-scale disturbance, which can modulate embedded lake-effect snowbands. Contributions from these interactions tend to offset the individual lake contributions, especially during the development of the collective lake disturbance, but vary spatially and temporally. As the regional-scale disturbance matures, lake-lake interactions then accentuate the individual lake contributions. Specifically, the modulation of lake-effect snowbands was translational, intensional, and in some instances morphological in nature. Near Lake Michigan, processes attributed to Lake Superior (upstream lake) were direct and synergistic (indirect), resulting in a time delay of maximum snowfall intensity, while processes attributed to the downstream lakes were primarily synergistic resulting in an overall decrease in snowfall intensity. (Author)
doi_str_mv 10.1175/1520-0493(2002)130<1510:TIOMLI>2.0.CO;2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27774023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>120738708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-9c07558ef6a31165d1f8c5ef5e604c991c61d4dc8ae3f658443598420d65a9903</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_QxAUPaSd_U5UBAlaC5Vc6nlZNruYmi93k4P_3sSKgqeBdx7eGR6ElhgWGEu-xJxADCylVwSAXGMKd5hjuNmu85fN-p4sYJHlt-QAzX7JQzQbURmDYOwYnYSwAwAhGJmhbPtmo7Jx1WAbY6PWRfVQ9WVX2ajS79Oqt16bvmybEA1d23zHsXXOmj4KfevrcIqOnK6CPfuZc_T69LjNnuNNvlpnD5vYUAl9nBqQnCfWCU0xFrzALjHcOm4FMJOm2AhcsMIk2lIneMIY5WnCCBSC6zQFOkeX-97Otx-DDb2qy2BsVenGtkNQRErJgNARPP8H7trBN-NvCqcJASlBjtBqDxnfhuCtU50va-0_FQY1mVaTPzX5U5NpNZpWk2m1N62IApXlioxNFz_ndDC6cl43pgx_dVQIKRNCvwD20YAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198207707</pqid></control><display><type>article</type><title>The influence of multiple lake interactions upon lake-effect storms</title><source>Free E-Journal (出版社公開部分のみ)</source><source>美国气象学会期刊(NSTL购买)</source><source>Alma/SFX Local Collection</source><creator>MANN, Greg E ; WAGENMAKER, Richard B ; SOUSOUNIS, Peter J</creator><creatorcontrib>MANN, Greg E ; WAGENMAKER, Richard B ; SOUSOUNIS, Peter J</creatorcontrib><description>Studies have shown that during prolonged cold air outbreaks, collective lake disturbances can originate from the organization of individual lake-scale disturbances. These collective lake disturbances may, through scale interactions, alter the behavior of the contributing individual lake-scale disturbances and the embedded lake-effect storms. Factor separation decomposition of the Great Lakes system indicates that various interactions among lake-scale processes contribute to the overall development of the regional-scale disturbance, which can modulate embedded lake-effect snowbands. Contributions from these interactions tend to offset the individual lake contributions, especially during the development of the collective lake disturbance, but vary spatially and temporally. As the regional-scale disturbance matures, lake-lake interactions then accentuate the individual lake contributions. Specifically, the modulation of lake-effect snowbands was translational, intensional, and in some instances morphological in nature. Near Lake Michigan, processes attributed to Lake Superior (upstream lake) were direct and synergistic (indirect), resulting in a time delay of maximum snowfall intensity, while processes attributed to the downstream lakes were primarily synergistic resulting in an overall decrease in snowfall intensity. (Author)</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/1520-0493(2002)130&lt;1510:TIOMLI&gt;2.0.CO;2</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Lakes ; Meteorology ; Other topics in atmospheric geophysics</subject><ispartof>Monthly weather review, 2002-06, Vol.130 (6), p.1510-1530</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jun 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-9c07558ef6a31165d1f8c5ef5e604c991c61d4dc8ae3f658443598420d65a9903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13667782$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MANN, Greg E</creatorcontrib><creatorcontrib>WAGENMAKER, Richard B</creatorcontrib><creatorcontrib>SOUSOUNIS, Peter J</creatorcontrib><title>The influence of multiple lake interactions upon lake-effect storms</title><title>Monthly weather review</title><description>Studies have shown that during prolonged cold air outbreaks, collective lake disturbances can originate from the organization of individual lake-scale disturbances. These collective lake disturbances may, through scale interactions, alter the behavior of the contributing individual lake-scale disturbances and the embedded lake-effect storms. Factor separation decomposition of the Great Lakes system indicates that various interactions among lake-scale processes contribute to the overall development of the regional-scale disturbance, which can modulate embedded lake-effect snowbands. Contributions from these interactions tend to offset the individual lake contributions, especially during the development of the collective lake disturbance, but vary spatially and temporally. As the regional-scale disturbance matures, lake-lake interactions then accentuate the individual lake contributions. Specifically, the modulation of lake-effect snowbands was translational, intensional, and in some instances morphological in nature. Near Lake Michigan, processes attributed to Lake Superior (upstream lake) were direct and synergistic (indirect), resulting in a time delay of maximum snowfall intensity, while processes attributed to the downstream lakes were primarily synergistic resulting in an overall decrease in snowfall intensity. (Author)</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Lakes</subject><subject>Meteorology</subject><subject>Other topics in atmospheric geophysics</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1Lw0AQhhdRsFb_QxAUPaSd_U5UBAlaC5Vc6nlZNruYmi93k4P_3sSKgqeBdx7eGR6ElhgWGEu-xJxADCylVwSAXGMKd5hjuNmu85fN-p4sYJHlt-QAzX7JQzQbURmDYOwYnYSwAwAhGJmhbPtmo7Jx1WAbY6PWRfVQ9WVX2ajS79Oqt16bvmybEA1d23zHsXXOmj4KfevrcIqOnK6CPfuZc_T69LjNnuNNvlpnD5vYUAl9nBqQnCfWCU0xFrzALjHcOm4FMJOm2AhcsMIk2lIneMIY5WnCCBSC6zQFOkeX-97Otx-DDb2qy2BsVenGtkNQRErJgNARPP8H7trBN-NvCqcJASlBjtBqDxnfhuCtU50va-0_FQY1mVaTPzX5U5NpNZpWk2m1N62IApXlioxNFz_ndDC6cl43pgx_dVQIKRNCvwD20YAa</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>MANN, Greg E</creator><creator>WAGENMAKER, Richard B</creator><creator>SOUSOUNIS, Peter J</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20020601</creationdate><title>The influence of multiple lake interactions upon lake-effect storms</title><author>MANN, Greg E ; WAGENMAKER, Richard B ; SOUSOUNIS, Peter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-9c07558ef6a31165d1f8c5ef5e604c991c61d4dc8ae3f658443598420d65a9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Lakes</topic><topic>Meteorology</topic><topic>Other topics in atmospheric geophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MANN, Greg E</creatorcontrib><creatorcontrib>WAGENMAKER, Richard B</creatorcontrib><creatorcontrib>SOUSOUNIS, Peter J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Military Database</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MANN, Greg E</au><au>WAGENMAKER, Richard B</au><au>SOUSOUNIS, Peter J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of multiple lake interactions upon lake-effect storms</atitle><jtitle>Monthly weather review</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>130</volume><issue>6</issue><spage>1510</spage><epage>1530</epage><pages>1510-1530</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>Studies have shown that during prolonged cold air outbreaks, collective lake disturbances can originate from the organization of individual lake-scale disturbances. These collective lake disturbances may, through scale interactions, alter the behavior of the contributing individual lake-scale disturbances and the embedded lake-effect storms. Factor separation decomposition of the Great Lakes system indicates that various interactions among lake-scale processes contribute to the overall development of the regional-scale disturbance, which can modulate embedded lake-effect snowbands. Contributions from these interactions tend to offset the individual lake contributions, especially during the development of the collective lake disturbance, but vary spatially and temporally. As the regional-scale disturbance matures, lake-lake interactions then accentuate the individual lake contributions. Specifically, the modulation of lake-effect snowbands was translational, intensional, and in some instances morphological in nature. Near Lake Michigan, processes attributed to Lake Superior (upstream lake) were direct and synergistic (indirect), resulting in a time delay of maximum snowfall intensity, while processes attributed to the downstream lakes were primarily synergistic resulting in an overall decrease in snowfall intensity. (Author)</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0493(2002)130&lt;1510:TIOMLI&gt;2.0.CO;2</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2002-06, Vol.130 (6), p.1510-1530
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_miscellaneous_27774023
source Free E-Journal (出版社公開部分のみ); 美国气象学会期刊(NSTL购买); Alma/SFX Local Collection
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Lakes
Meteorology
Other topics in atmospheric geophysics
title The influence of multiple lake interactions upon lake-effect storms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20multiple%20lake%20interactions%20upon%20lake-effect%20storms&rft.jtitle=Monthly%20weather%20review&rft.au=MANN,%20Greg%20E&rft.date=2002-06-01&rft.volume=130&rft.issue=6&rft.spage=1510&rft.epage=1530&rft.pages=1510-1530&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/1520-0493(2002)130%3C1510:TIOMLI%3E2.0.CO;2&rft_dat=%3Cproquest_cross%3E120738708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198207707&rft_id=info:pmid/&rfr_iscdi=true