A unified approach based on multidimensional scaling for calibration estimation in survey sampling with qualitative auxiliary information

Survey calibration is a widely used method to estimate the population mean or total score of a target variable, particularly in medical research. In this procedure, auxiliary information related to the variable of interest is used to recalibrate the estimation weights. However, when the auxiliary in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2023-04, Vol.32 (4), p.760-772
Hauptverfasser: Vera, J Fernando, Sánchez Zuleta, Carmen Cecilia, Rueda, Maria del Mar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Survey calibration is a widely used method to estimate the population mean or total score of a target variable, particularly in medical research. In this procedure, auxiliary information related to the variable of interest is used to recalibrate the estimation weights. However, when the auxiliary information includes qualitative variables, traditional calibration techniques may be not feasible or the optimisation procedure may fail. In this article, we propose the use of linear calibration in conjunction with a multidimensional scaling-based set of continuous, uncorrelated auxiliary variables along with a suitable metric in a distance-based regression framework. The calibration weights are estimated using a projection of the auxiliary information on a low-dimensional Euclidean space. The approach becomes one of the linear calibration with quantitative variables avoiding the usual computational problems in the presence of qualitative auxiliary information. The new variables preserve the underlying assumption in linear calibration of a linear relationship between the auxiliary and target variables, and therefore the optimal properties of the linear calibration method remain true. The behaviour of this approach is examined using a Monte Carlo procedure and its value is illustrated by analysing real data sets and by comparing its performance with that of traditional calibration procedures.
ISSN:0962-2802
1477-0334
DOI:10.1177/09622802231151211