MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology

Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern pathology 2023-04, Vol.36 (4), p.100088-100088, Article 100088
Hauptverfasser: Sarkis, Rita, Burri, Olivier, Royer-Chardon, Claire, Schyrr, Frédérica, Blum, Sophie, Costanza, Mariangela, Cherix, Stephane, Piazzon, Nathalie, Barcena, Carmen, Bisig, Bettina, Nardi, Valentina, Sarro, Rossella, Ambrosini, Giovanna, Weigert, Martin, Spertini, Olivier, Blum, Sabine, Deplancke, Bart, Seitz, Arne, de Leval, Laurence, Naveiras, Olaia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100088
container_issue 4
container_start_page 100088
container_title Modern pathology
container_volume 36
creator Sarkis, Rita
Burri, Olivier
Royer-Chardon, Claire
Schyrr, Frédérica
Blum, Sophie
Costanza, Mariangela
Cherix, Stephane
Piazzon, Nathalie
Barcena, Carmen
Bisig, Bettina
Nardi, Valentina
Sarro, Rossella
Ambrosini, Giovanna
Weigert, Martin
Spertini, Olivier
Blum, Sabine
Deplancke, Bart
Seitz, Arne
de Leval, Laurence
Naveiras, Olaia
description Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.
doi_str_mv 10.1016/j.modpat.2022.100088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2777010033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893395222055284</els_id><sourcerecordid>2777010033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3d600f1a9d932264bf75de6b4acd5401781c2ebf443ec0e740261a97fbacaed43</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi0EotuWN0DIRy5ZJraTeDkgLduFIhUBEoij5diTxUtiL7azpW_fLCkcOVljff8_mo-Q5yUsSyjrV_vlEOxB5yUDxqYvACkfkUVZcSiAyeoxWYBc8YKvKnZGzlPaA5SikuwpOeN1IyXIZkGOH3WM4fbLqH2mbAmv6ZpeuZ3Luqefdf4R-rC7o99D_Nn14ZauU3IpO7-jb4NHOofp9qj7UWcXPHWebn8fMLoB_alDe0s3vfPOTMM1Djr_abwkTzrdJ3z28F6Qb--2XzfXxc2n9x8265vCCJC54LYG6Eq9sivOWC3arqks1q3QxlYCykaWhmHbCcHRADYCWD3RTddqo9EKfkFezr2HGH6NmLIaXDLY99pjGJNiTdPA5I7zCRUzamJIKWKnDtMVOt6pEtTJuNqr2bg6GVez8Sn24mHD2A5o_4X-Kp6ANzOA051Hh1El49AbtC6iycoG9_8N96nelL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777010033</pqid></control><display><type>article</type><title>MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sarkis, Rita ; Burri, Olivier ; Royer-Chardon, Claire ; Schyrr, Frédérica ; Blum, Sophie ; Costanza, Mariangela ; Cherix, Stephane ; Piazzon, Nathalie ; Barcena, Carmen ; Bisig, Bettina ; Nardi, Valentina ; Sarro, Rossella ; Ambrosini, Giovanna ; Weigert, Martin ; Spertini, Olivier ; Blum, Sabine ; Deplancke, Bart ; Seitz, Arne ; de Leval, Laurence ; Naveiras, Olaia</creator><creatorcontrib>Sarkis, Rita ; Burri, Olivier ; Royer-Chardon, Claire ; Schyrr, Frédérica ; Blum, Sophie ; Costanza, Mariangela ; Cherix, Stephane ; Piazzon, Nathalie ; Barcena, Carmen ; Bisig, Bettina ; Nardi, Valentina ; Sarro, Rossella ; Ambrosini, Giovanna ; Weigert, Martin ; Spertini, Olivier ; Blum, Sabine ; Deplancke, Bart ; Seitz, Arne ; de Leval, Laurence ; Naveiras, Olaia</creatorcontrib><description>Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.</description><identifier>ISSN: 0893-3952</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1016/j.modpat.2022.100088</identifier><identifier>PMID: 36788087</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adiposity ; bone marrow ; Bone Marrow - pathology ; Bone Marrow Cells - pathology ; Bone Marrow Examination ; cellularity ; digital pathology ; Hematology ; hematopathology ; Humans ; open-source ; stroma ; Workflow</subject><ispartof>Modern pathology, 2023-04, Vol.36 (4), p.100088-100088, Article 100088</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3d600f1a9d932264bf75de6b4acd5401781c2ebf443ec0e740261a97fbacaed43</citedby><cites>FETCH-LOGICAL-c408t-3d600f1a9d932264bf75de6b4acd5401781c2ebf443ec0e740261a97fbacaed43</cites><orcidid>0000-0003-3434-0022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36788087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkis, Rita</creatorcontrib><creatorcontrib>Burri, Olivier</creatorcontrib><creatorcontrib>Royer-Chardon, Claire</creatorcontrib><creatorcontrib>Schyrr, Frédérica</creatorcontrib><creatorcontrib>Blum, Sophie</creatorcontrib><creatorcontrib>Costanza, Mariangela</creatorcontrib><creatorcontrib>Cherix, Stephane</creatorcontrib><creatorcontrib>Piazzon, Nathalie</creatorcontrib><creatorcontrib>Barcena, Carmen</creatorcontrib><creatorcontrib>Bisig, Bettina</creatorcontrib><creatorcontrib>Nardi, Valentina</creatorcontrib><creatorcontrib>Sarro, Rossella</creatorcontrib><creatorcontrib>Ambrosini, Giovanna</creatorcontrib><creatorcontrib>Weigert, Martin</creatorcontrib><creatorcontrib>Spertini, Olivier</creatorcontrib><creatorcontrib>Blum, Sabine</creatorcontrib><creatorcontrib>Deplancke, Bart</creatorcontrib><creatorcontrib>Seitz, Arne</creatorcontrib><creatorcontrib>de Leval, Laurence</creatorcontrib><creatorcontrib>Naveiras, Olaia</creatorcontrib><title>MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><description>Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.</description><subject>adiposity</subject><subject>bone marrow</subject><subject>Bone Marrow - pathology</subject><subject>Bone Marrow Cells - pathology</subject><subject>Bone Marrow Examination</subject><subject>cellularity</subject><subject>digital pathology</subject><subject>Hematology</subject><subject>hematopathology</subject><subject>Humans</subject><subject>open-source</subject><subject>stroma</subject><subject>Workflow</subject><issn>0893-3952</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFu1DAQhi0EotuWN0DIRy5ZJraTeDkgLduFIhUBEoij5diTxUtiL7azpW_fLCkcOVljff8_mo-Q5yUsSyjrV_vlEOxB5yUDxqYvACkfkUVZcSiAyeoxWYBc8YKvKnZGzlPaA5SikuwpOeN1IyXIZkGOH3WM4fbLqH2mbAmv6ZpeuZ3Luqefdf4R-rC7o99D_Nn14ZauU3IpO7-jb4NHOofp9qj7UWcXPHWebn8fMLoB_alDe0s3vfPOTMM1Djr_abwkTzrdJ3z28F6Qb--2XzfXxc2n9x8265vCCJC54LYG6Eq9sivOWC3arqks1q3QxlYCykaWhmHbCcHRADYCWD3RTddqo9EKfkFezr2HGH6NmLIaXDLY99pjGJNiTdPA5I7zCRUzamJIKWKnDtMVOt6pEtTJuNqr2bg6GVez8Sn24mHD2A5o_4X-Kp6ANzOA051Hh1El49AbtC6iycoG9_8N96nelL4</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Sarkis, Rita</creator><creator>Burri, Olivier</creator><creator>Royer-Chardon, Claire</creator><creator>Schyrr, Frédérica</creator><creator>Blum, Sophie</creator><creator>Costanza, Mariangela</creator><creator>Cherix, Stephane</creator><creator>Piazzon, Nathalie</creator><creator>Barcena, Carmen</creator><creator>Bisig, Bettina</creator><creator>Nardi, Valentina</creator><creator>Sarro, Rossella</creator><creator>Ambrosini, Giovanna</creator><creator>Weigert, Martin</creator><creator>Spertini, Olivier</creator><creator>Blum, Sabine</creator><creator>Deplancke, Bart</creator><creator>Seitz, Arne</creator><creator>de Leval, Laurence</creator><creator>Naveiras, Olaia</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3434-0022</orcidid></search><sort><creationdate>202304</creationdate><title>MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology</title><author>Sarkis, Rita ; Burri, Olivier ; Royer-Chardon, Claire ; Schyrr, Frédérica ; Blum, Sophie ; Costanza, Mariangela ; Cherix, Stephane ; Piazzon, Nathalie ; Barcena, Carmen ; Bisig, Bettina ; Nardi, Valentina ; Sarro, Rossella ; Ambrosini, Giovanna ; Weigert, Martin ; Spertini, Olivier ; Blum, Sabine ; Deplancke, Bart ; Seitz, Arne ; de Leval, Laurence ; Naveiras, Olaia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3d600f1a9d932264bf75de6b4acd5401781c2ebf443ec0e740261a97fbacaed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adiposity</topic><topic>bone marrow</topic><topic>Bone Marrow - pathology</topic><topic>Bone Marrow Cells - pathology</topic><topic>Bone Marrow Examination</topic><topic>cellularity</topic><topic>digital pathology</topic><topic>Hematology</topic><topic>hematopathology</topic><topic>Humans</topic><topic>open-source</topic><topic>stroma</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkis, Rita</creatorcontrib><creatorcontrib>Burri, Olivier</creatorcontrib><creatorcontrib>Royer-Chardon, Claire</creatorcontrib><creatorcontrib>Schyrr, Frédérica</creatorcontrib><creatorcontrib>Blum, Sophie</creatorcontrib><creatorcontrib>Costanza, Mariangela</creatorcontrib><creatorcontrib>Cherix, Stephane</creatorcontrib><creatorcontrib>Piazzon, Nathalie</creatorcontrib><creatorcontrib>Barcena, Carmen</creatorcontrib><creatorcontrib>Bisig, Bettina</creatorcontrib><creatorcontrib>Nardi, Valentina</creatorcontrib><creatorcontrib>Sarro, Rossella</creatorcontrib><creatorcontrib>Ambrosini, Giovanna</creatorcontrib><creatorcontrib>Weigert, Martin</creatorcontrib><creatorcontrib>Spertini, Olivier</creatorcontrib><creatorcontrib>Blum, Sabine</creatorcontrib><creatorcontrib>Deplancke, Bart</creatorcontrib><creatorcontrib>Seitz, Arne</creatorcontrib><creatorcontrib>de Leval, Laurence</creatorcontrib><creatorcontrib>Naveiras, Olaia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkis, Rita</au><au>Burri, Olivier</au><au>Royer-Chardon, Claire</au><au>Schyrr, Frédérica</au><au>Blum, Sophie</au><au>Costanza, Mariangela</au><au>Cherix, Stephane</au><au>Piazzon, Nathalie</au><au>Barcena, Carmen</au><au>Bisig, Bettina</au><au>Nardi, Valentina</au><au>Sarro, Rossella</au><au>Ambrosini, Giovanna</au><au>Weigert, Martin</au><au>Spertini, Olivier</au><au>Blum, Sabine</au><au>Deplancke, Bart</au><au>Seitz, Arne</au><au>de Leval, Laurence</au><au>Naveiras, Olaia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology</atitle><jtitle>Modern pathology</jtitle><addtitle>Mod Pathol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>36</volume><issue>4</issue><spage>100088</spage><epage>100088</epage><pages>100088-100088</pages><artnum>100088</artnum><issn>0893-3952</issn><eissn>1530-0285</eissn><abstract>Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36788087</pmid><doi>10.1016/j.modpat.2022.100088</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3434-0022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-3952
ispartof Modern pathology, 2023-04, Vol.36 (4), p.100088-100088, Article 100088
issn 0893-3952
1530-0285
language eng
recordid cdi_proquest_miscellaneous_2777010033
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects adiposity
bone marrow
Bone Marrow - pathology
Bone Marrow Cells - pathology
Bone Marrow Examination
cellularity
digital pathology
Hematology
hematopathology
Humans
open-source
stroma
Workflow
title MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MarrowQuant%202.0:%20A%20Digital%20Pathology%20Workflow%20Assisting%20Bone%20Marrow%20Evaluation%20in%20Experimental%20and%20Clinical%20Hematology&rft.jtitle=Modern%20pathology&rft.au=Sarkis,%20Rita&rft.date=2023-04&rft.volume=36&rft.issue=4&rft.spage=100088&rft.epage=100088&rft.pages=100088-100088&rft.artnum=100088&rft.issn=0893-3952&rft.eissn=1530-0285&rft_id=info:doi/10.1016/j.modpat.2022.100088&rft_dat=%3Cproquest_cross%3E2777010033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777010033&rft_id=info:pmid/36788087&rft_els_id=S0893395222055284&rfr_iscdi=true