MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology
Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not...
Gespeichert in:
Veröffentlicht in: | Modern pathology 2023-04, Vol.36 (4), p.100088-100088, Article 100088 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100088 |
---|---|
container_issue | 4 |
container_start_page | 100088 |
container_title | Modern pathology |
container_volume | 36 |
creator | Sarkis, Rita Burri, Olivier Royer-Chardon, Claire Schyrr, Frédérica Blum, Sophie Costanza, Mariangela Cherix, Stephane Piazzon, Nathalie Barcena, Carmen Bisig, Bettina Nardi, Valentina Sarro, Rossella Ambrosini, Giovanna Weigert, Martin Spertini, Olivier Blum, Sabine Deplancke, Bart Seitz, Arne de Leval, Laurence Naveiras, Olaia |
description | Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams. |
doi_str_mv | 10.1016/j.modpat.2022.100088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2777010033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893395222055284</els_id><sourcerecordid>2777010033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3d600f1a9d932264bf75de6b4acd5401781c2ebf443ec0e740261a97fbacaed43</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi0EotuWN0DIRy5ZJraTeDkgLduFIhUBEoij5diTxUtiL7azpW_fLCkcOVljff8_mo-Q5yUsSyjrV_vlEOxB5yUDxqYvACkfkUVZcSiAyeoxWYBc8YKvKnZGzlPaA5SikuwpOeN1IyXIZkGOH3WM4fbLqH2mbAmv6ZpeuZ3Luqefdf4R-rC7o99D_Nn14ZauU3IpO7-jb4NHOofp9qj7UWcXPHWebn8fMLoB_alDe0s3vfPOTMM1Djr_abwkTzrdJ3z28F6Qb--2XzfXxc2n9x8265vCCJC54LYG6Eq9sivOWC3arqks1q3QxlYCykaWhmHbCcHRADYCWD3RTddqo9EKfkFezr2HGH6NmLIaXDLY99pjGJNiTdPA5I7zCRUzamJIKWKnDtMVOt6pEtTJuNqr2bg6GVez8Sn24mHD2A5o_4X-Kp6ANzOA051Hh1El49AbtC6iycoG9_8N96nelL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777010033</pqid></control><display><type>article</type><title>MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sarkis, Rita ; Burri, Olivier ; Royer-Chardon, Claire ; Schyrr, Frédérica ; Blum, Sophie ; Costanza, Mariangela ; Cherix, Stephane ; Piazzon, Nathalie ; Barcena, Carmen ; Bisig, Bettina ; Nardi, Valentina ; Sarro, Rossella ; Ambrosini, Giovanna ; Weigert, Martin ; Spertini, Olivier ; Blum, Sabine ; Deplancke, Bart ; Seitz, Arne ; de Leval, Laurence ; Naveiras, Olaia</creator><creatorcontrib>Sarkis, Rita ; Burri, Olivier ; Royer-Chardon, Claire ; Schyrr, Frédérica ; Blum, Sophie ; Costanza, Mariangela ; Cherix, Stephane ; Piazzon, Nathalie ; Barcena, Carmen ; Bisig, Bettina ; Nardi, Valentina ; Sarro, Rossella ; Ambrosini, Giovanna ; Weigert, Martin ; Spertini, Olivier ; Blum, Sabine ; Deplancke, Bart ; Seitz, Arne ; de Leval, Laurence ; Naveiras, Olaia</creatorcontrib><description>Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.</description><identifier>ISSN: 0893-3952</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1016/j.modpat.2022.100088</identifier><identifier>PMID: 36788087</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adiposity ; bone marrow ; Bone Marrow - pathology ; Bone Marrow Cells - pathology ; Bone Marrow Examination ; cellularity ; digital pathology ; Hematology ; hematopathology ; Humans ; open-source ; stroma ; Workflow</subject><ispartof>Modern pathology, 2023-04, Vol.36 (4), p.100088-100088, Article 100088</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3d600f1a9d932264bf75de6b4acd5401781c2ebf443ec0e740261a97fbacaed43</citedby><cites>FETCH-LOGICAL-c408t-3d600f1a9d932264bf75de6b4acd5401781c2ebf443ec0e740261a97fbacaed43</cites><orcidid>0000-0003-3434-0022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36788087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkis, Rita</creatorcontrib><creatorcontrib>Burri, Olivier</creatorcontrib><creatorcontrib>Royer-Chardon, Claire</creatorcontrib><creatorcontrib>Schyrr, Frédérica</creatorcontrib><creatorcontrib>Blum, Sophie</creatorcontrib><creatorcontrib>Costanza, Mariangela</creatorcontrib><creatorcontrib>Cherix, Stephane</creatorcontrib><creatorcontrib>Piazzon, Nathalie</creatorcontrib><creatorcontrib>Barcena, Carmen</creatorcontrib><creatorcontrib>Bisig, Bettina</creatorcontrib><creatorcontrib>Nardi, Valentina</creatorcontrib><creatorcontrib>Sarro, Rossella</creatorcontrib><creatorcontrib>Ambrosini, Giovanna</creatorcontrib><creatorcontrib>Weigert, Martin</creatorcontrib><creatorcontrib>Spertini, Olivier</creatorcontrib><creatorcontrib>Blum, Sabine</creatorcontrib><creatorcontrib>Deplancke, Bart</creatorcontrib><creatorcontrib>Seitz, Arne</creatorcontrib><creatorcontrib>de Leval, Laurence</creatorcontrib><creatorcontrib>Naveiras, Olaia</creatorcontrib><title>MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><description>Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.</description><subject>adiposity</subject><subject>bone marrow</subject><subject>Bone Marrow - pathology</subject><subject>Bone Marrow Cells - pathology</subject><subject>Bone Marrow Examination</subject><subject>cellularity</subject><subject>digital pathology</subject><subject>Hematology</subject><subject>hematopathology</subject><subject>Humans</subject><subject>open-source</subject><subject>stroma</subject><subject>Workflow</subject><issn>0893-3952</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFu1DAQhi0EotuWN0DIRy5ZJraTeDkgLduFIhUBEoij5diTxUtiL7azpW_fLCkcOVljff8_mo-Q5yUsSyjrV_vlEOxB5yUDxqYvACkfkUVZcSiAyeoxWYBc8YKvKnZGzlPaA5SikuwpOeN1IyXIZkGOH3WM4fbLqH2mbAmv6ZpeuZ3Luqefdf4R-rC7o99D_Nn14ZauU3IpO7-jb4NHOofp9qj7UWcXPHWebn8fMLoB_alDe0s3vfPOTMM1Djr_abwkTzrdJ3z28F6Qb--2XzfXxc2n9x8265vCCJC54LYG6Eq9sivOWC3arqks1q3QxlYCykaWhmHbCcHRADYCWD3RTddqo9EKfkFezr2HGH6NmLIaXDLY99pjGJNiTdPA5I7zCRUzamJIKWKnDtMVOt6pEtTJuNqr2bg6GVez8Sn24mHD2A5o_4X-Kp6ANzOA051Hh1El49AbtC6iycoG9_8N96nelL4</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Sarkis, Rita</creator><creator>Burri, Olivier</creator><creator>Royer-Chardon, Claire</creator><creator>Schyrr, Frédérica</creator><creator>Blum, Sophie</creator><creator>Costanza, Mariangela</creator><creator>Cherix, Stephane</creator><creator>Piazzon, Nathalie</creator><creator>Barcena, Carmen</creator><creator>Bisig, Bettina</creator><creator>Nardi, Valentina</creator><creator>Sarro, Rossella</creator><creator>Ambrosini, Giovanna</creator><creator>Weigert, Martin</creator><creator>Spertini, Olivier</creator><creator>Blum, Sabine</creator><creator>Deplancke, Bart</creator><creator>Seitz, Arne</creator><creator>de Leval, Laurence</creator><creator>Naveiras, Olaia</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3434-0022</orcidid></search><sort><creationdate>202304</creationdate><title>MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology</title><author>Sarkis, Rita ; Burri, Olivier ; Royer-Chardon, Claire ; Schyrr, Frédérica ; Blum, Sophie ; Costanza, Mariangela ; Cherix, Stephane ; Piazzon, Nathalie ; Barcena, Carmen ; Bisig, Bettina ; Nardi, Valentina ; Sarro, Rossella ; Ambrosini, Giovanna ; Weigert, Martin ; Spertini, Olivier ; Blum, Sabine ; Deplancke, Bart ; Seitz, Arne ; de Leval, Laurence ; Naveiras, Olaia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3d600f1a9d932264bf75de6b4acd5401781c2ebf443ec0e740261a97fbacaed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adiposity</topic><topic>bone marrow</topic><topic>Bone Marrow - pathology</topic><topic>Bone Marrow Cells - pathology</topic><topic>Bone Marrow Examination</topic><topic>cellularity</topic><topic>digital pathology</topic><topic>Hematology</topic><topic>hematopathology</topic><topic>Humans</topic><topic>open-source</topic><topic>stroma</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkis, Rita</creatorcontrib><creatorcontrib>Burri, Olivier</creatorcontrib><creatorcontrib>Royer-Chardon, Claire</creatorcontrib><creatorcontrib>Schyrr, Frédérica</creatorcontrib><creatorcontrib>Blum, Sophie</creatorcontrib><creatorcontrib>Costanza, Mariangela</creatorcontrib><creatorcontrib>Cherix, Stephane</creatorcontrib><creatorcontrib>Piazzon, Nathalie</creatorcontrib><creatorcontrib>Barcena, Carmen</creatorcontrib><creatorcontrib>Bisig, Bettina</creatorcontrib><creatorcontrib>Nardi, Valentina</creatorcontrib><creatorcontrib>Sarro, Rossella</creatorcontrib><creatorcontrib>Ambrosini, Giovanna</creatorcontrib><creatorcontrib>Weigert, Martin</creatorcontrib><creatorcontrib>Spertini, Olivier</creatorcontrib><creatorcontrib>Blum, Sabine</creatorcontrib><creatorcontrib>Deplancke, Bart</creatorcontrib><creatorcontrib>Seitz, Arne</creatorcontrib><creatorcontrib>de Leval, Laurence</creatorcontrib><creatorcontrib>Naveiras, Olaia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkis, Rita</au><au>Burri, Olivier</au><au>Royer-Chardon, Claire</au><au>Schyrr, Frédérica</au><au>Blum, Sophie</au><au>Costanza, Mariangela</au><au>Cherix, Stephane</au><au>Piazzon, Nathalie</au><au>Barcena, Carmen</au><au>Bisig, Bettina</au><au>Nardi, Valentina</au><au>Sarro, Rossella</au><au>Ambrosini, Giovanna</au><au>Weigert, Martin</au><au>Spertini, Olivier</au><au>Blum, Sabine</au><au>Deplancke, Bart</au><au>Seitz, Arne</au><au>de Leval, Laurence</au><au>Naveiras, Olaia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology</atitle><jtitle>Modern pathology</jtitle><addtitle>Mod Pathol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>36</volume><issue>4</issue><spage>100088</spage><epage>100088</epage><pages>100088-100088</pages><artnum>100088</artnum><issn>0893-3952</issn><eissn>1530-0285</eissn><abstract>Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36788087</pmid><doi>10.1016/j.modpat.2022.100088</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3434-0022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-3952 |
ispartof | Modern pathology, 2023-04, Vol.36 (4), p.100088-100088, Article 100088 |
issn | 0893-3952 1530-0285 |
language | eng |
recordid | cdi_proquest_miscellaneous_2777010033 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | adiposity bone marrow Bone Marrow - pathology Bone Marrow Cells - pathology Bone Marrow Examination cellularity digital pathology Hematology hematopathology Humans open-source stroma Workflow |
title | MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MarrowQuant%202.0:%20A%20Digital%20Pathology%20Workflow%20Assisting%20Bone%20Marrow%20Evaluation%20in%20Experimental%20and%20Clinical%20Hematology&rft.jtitle=Modern%20pathology&rft.au=Sarkis,%20Rita&rft.date=2023-04&rft.volume=36&rft.issue=4&rft.spage=100088&rft.epage=100088&rft.pages=100088-100088&rft.artnum=100088&rft.issn=0893-3952&rft.eissn=1530-0285&rft_id=info:doi/10.1016/j.modpat.2022.100088&rft_dat=%3Cproquest_cross%3E2777010033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777010033&rft_id=info:pmid/36788087&rft_els_id=S0893395222055284&rfr_iscdi=true |