The ordered weighted geometric averaging operators
The ordered weighted averaging (OWA) operator was introduced by Yager.1 The fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in descending order. In this article, we propose two new classes of aggregation operators called ordered weighted geomet...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2002-07, Vol.17 (7), p.709-716 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 716 |
---|---|
container_issue | 7 |
container_start_page | 709 |
container_title | International journal of intelligent systems |
container_volume | 17 |
creator | Xu, Z. S. Da, Q. L. |
description | The ordered weighted averaging (OWA) operator was introduced by Yager.1 The
fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in
descending order. In this article, we propose two new classes of aggregation operators called ordered weighted
geometric averaging (OWGA) operators and study some desired properties of these operators. Some methods
for obtaining the associated weighting parameters are discussed, and the relationship between the OWA and DOWGA
operators is also investigated. © 2002 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/int.10045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27769989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27769989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4015-b6cb4b91a97c970708166252a388209239ff7d97b0d6dbe9c506ba3b077fde993</originalsourceid><addsrcrecordid>eNp1kMFPwjAchRujiYge_A920cTD5Nd2W9ujIQokBBODgXhpuq4b1cGwHSL_vcOhnjy9d_jed3gIXWK4xQCkZ1f1vkTxEepgEDzEGM-PUQc4j0KOGT1FZ96_AmDMoriDyHRhgsplxpks2BpbLOqmFKZamtpZHagP41RhV0VQrZtWV86fo5Ncld5cHLKLnh_up_1hOH4cjPp341BHgOMwTXQapQIrwbRgwIDjJCExUZRzAoJQkecsEyyFLMlSI3QMSapoCozlmRGCdtF161276n1jfC2X1mtTlmplqo2XhLFECL4Hb1pQu8p7Z3K5dnap3E5ikPtXZPOK_H6lYa8OUuW1KnOnVtr6vwFlEaYEGq7Xcltbmt3_QjmaTH_MYbuwvjafvwvl3mTCKIvlbDKQFIbzp1n_RU7oF6Jofv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27769989</pqid></control><display><type>article</type><title>The ordered weighted geometric averaging operators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Z. S. ; Da, Q. L.</creator><creatorcontrib>Xu, Z. S. ; Da, Q. L.</creatorcontrib><description>The ordered weighted averaging (OWA) operator was introduced by Yager.1 The
fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in
descending order. In this article, we propose two new classes of aggregation operators called ordered weighted
geometric averaging (OWGA) operators and study some desired properties of these operators. Some methods
for obtaining the associated weighting parameters are discussed, and the relationship between the OWA and DOWGA
operators is also investigated. © 2002 Wiley Periodicals, Inc.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.10045</identifier><identifier>CODEN: IJISED</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Problem solving, game playing</subject><ispartof>International journal of intelligent systems, 2002-07, Vol.17 (7), p.709-716</ispartof><rights>Copyright © 2002 Wiley Periodicals, Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4015-b6cb4b91a97c970708166252a388209239ff7d97b0d6dbe9c506ba3b077fde993</citedby><cites>FETCH-LOGICAL-c4015-b6cb4b91a97c970708166252a388209239ff7d97b0d6dbe9c506ba3b077fde993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.10045$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.10045$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13741320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Z. S.</creatorcontrib><creatorcontrib>Da, Q. L.</creatorcontrib><title>The ordered weighted geometric averaging operators</title><title>International journal of intelligent systems</title><addtitle>Int. J. Intell. Syst</addtitle><description>The ordered weighted averaging (OWA) operator was introduced by Yager.1 The
fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in
descending order. In this article, we propose two new classes of aggregation operators called ordered weighted
geometric averaging (OWGA) operators and study some desired properties of these operators. Some methods
for obtaining the associated weighting parameters are discussed, and the relationship between the OWA and DOWGA
operators is also investigated. © 2002 Wiley Periodicals, Inc.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Problem solving, game playing</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kMFPwjAchRujiYge_A920cTD5Nd2W9ujIQokBBODgXhpuq4b1cGwHSL_vcOhnjy9d_jed3gIXWK4xQCkZ1f1vkTxEepgEDzEGM-PUQc4j0KOGT1FZ96_AmDMoriDyHRhgsplxpks2BpbLOqmFKZamtpZHagP41RhV0VQrZtWV86fo5Ncld5cHLKLnh_up_1hOH4cjPp341BHgOMwTXQapQIrwbRgwIDjJCExUZRzAoJQkecsEyyFLMlSI3QMSapoCozlmRGCdtF161276n1jfC2X1mtTlmplqo2XhLFECL4Hb1pQu8p7Z3K5dnap3E5ikPtXZPOK_H6lYa8OUuW1KnOnVtr6vwFlEaYEGq7Xcltbmt3_QjmaTH_MYbuwvjafvwvl3mTCKIvlbDKQFIbzp1n_RU7oF6Jofv0</recordid><startdate>200207</startdate><enddate>200207</enddate><creator>Xu, Z. S.</creator><creator>Da, Q. L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200207</creationdate><title>The ordered weighted geometric averaging operators</title><author>Xu, Z. S. ; Da, Q. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4015-b6cb4b91a97c970708166252a388209239ff7d97b0d6dbe9c506ba3b077fde993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Problem solving, game playing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Z. S.</creatorcontrib><creatorcontrib>Da, Q. L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Z. S.</au><au>Da, Q. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ordered weighted geometric averaging operators</atitle><jtitle>International journal of intelligent systems</jtitle><addtitle>Int. J. Intell. Syst</addtitle><date>2002-07</date><risdate>2002</risdate><volume>17</volume><issue>7</issue><spage>709</spage><epage>716</epage><pages>709-716</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><coden>IJISED</coden><abstract>The ordered weighted averaging (OWA) operator was introduced by Yager.1 The
fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in
descending order. In this article, we propose two new classes of aggregation operators called ordered weighted
geometric averaging (OWGA) operators and study some desired properties of these operators. Some methods
for obtaining the associated weighting parameters are discussed, and the relationship between the OWA and DOWGA
operators is also investigated. © 2002 Wiley Periodicals, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/int.10045</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-8173 |
ispartof | International journal of intelligent systems, 2002-07, Vol.17 (7), p.709-716 |
issn | 0884-8173 1098-111X |
language | eng |
recordid | cdi_proquest_miscellaneous_27769989 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Problem solving, game playing |
title | The ordered weighted geometric averaging operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ordered%20weighted%20geometric%20averaging%20operators&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Xu,%20Z.%20S.&rft.date=2002-07&rft.volume=17&rft.issue=7&rft.spage=709&rft.epage=716&rft.pages=709-716&rft.issn=0884-8173&rft.eissn=1098-111X&rft.coden=IJISED&rft_id=info:doi/10.1002/int.10045&rft_dat=%3Cproquest_cross%3E27769989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27769989&rft_id=info:pmid/&rfr_iscdi=true |