The ordered weighted geometric averaging operators

The ordered weighted averaging (OWA) operator was introduced by Yager.1 The fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in descending order. In this article, we propose two new classes of aggregation operators called ordered weighted geomet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2002-07, Vol.17 (7), p.709-716
Hauptverfasser: Xu, Z. S., Da, Q. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 716
container_issue 7
container_start_page 709
container_title International journal of intelligent systems
container_volume 17
creator Xu, Z. S.
Da, Q. L.
description The ordered weighted averaging (OWA) operator was introduced by Yager.1 The fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in descending order. In this article, we propose two new classes of aggregation operators called ordered weighted geometric averaging (OWGA) operators and study some desired properties of these operators. Some methods for obtaining the associated weighting parameters are discussed, and the relationship between the OWA and DOWGA operators is also investigated. © 2002 Wiley Periodicals, Inc.
doi_str_mv 10.1002/int.10045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27769989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27769989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4015-b6cb4b91a97c970708166252a388209239ff7d97b0d6dbe9c506ba3b077fde993</originalsourceid><addsrcrecordid>eNp1kMFPwjAchRujiYge_A920cTD5Nd2W9ujIQokBBODgXhpuq4b1cGwHSL_vcOhnjy9d_jed3gIXWK4xQCkZ1f1vkTxEepgEDzEGM-PUQc4j0KOGT1FZ96_AmDMoriDyHRhgsplxpks2BpbLOqmFKZamtpZHagP41RhV0VQrZtWV86fo5Ncld5cHLKLnh_up_1hOH4cjPp341BHgOMwTXQapQIrwbRgwIDjJCExUZRzAoJQkecsEyyFLMlSI3QMSapoCozlmRGCdtF161276n1jfC2X1mtTlmplqo2XhLFECL4Hb1pQu8p7Z3K5dnap3E5ikPtXZPOK_H6lYa8OUuW1KnOnVtr6vwFlEaYEGq7Xcltbmt3_QjmaTH_MYbuwvjafvwvl3mTCKIvlbDKQFIbzp1n_RU7oF6Jofv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27769989</pqid></control><display><type>article</type><title>The ordered weighted geometric averaging operators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Z. S. ; Da, Q. L.</creator><creatorcontrib>Xu, Z. S. ; Da, Q. L.</creatorcontrib><description>The ordered weighted averaging (OWA) operator was introduced by Yager.1 The fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in descending order. In this article, we propose two new classes of aggregation operators called ordered weighted geometric averaging (OWGA) operators and study some desired properties of these operators. Some methods for obtaining the associated weighting parameters are discussed, and the relationship between the OWA and DOWGA operators is also investigated. © 2002 Wiley Periodicals, Inc.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.10045</identifier><identifier>CODEN: IJISED</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Problem solving, game playing</subject><ispartof>International journal of intelligent systems, 2002-07, Vol.17 (7), p.709-716</ispartof><rights>Copyright © 2002 Wiley Periodicals, Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4015-b6cb4b91a97c970708166252a388209239ff7d97b0d6dbe9c506ba3b077fde993</citedby><cites>FETCH-LOGICAL-c4015-b6cb4b91a97c970708166252a388209239ff7d97b0d6dbe9c506ba3b077fde993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.10045$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.10045$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13741320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Z. S.</creatorcontrib><creatorcontrib>Da, Q. L.</creatorcontrib><title>The ordered weighted geometric averaging operators</title><title>International journal of intelligent systems</title><addtitle>Int. J. Intell. Syst</addtitle><description>The ordered weighted averaging (OWA) operator was introduced by Yager.1 The fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in descending order. In this article, we propose two new classes of aggregation operators called ordered weighted geometric averaging (OWGA) operators and study some desired properties of these operators. Some methods for obtaining the associated weighting parameters are discussed, and the relationship between the OWA and DOWGA operators is also investigated. © 2002 Wiley Periodicals, Inc.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Problem solving, game playing</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kMFPwjAchRujiYge_A920cTD5Nd2W9ujIQokBBODgXhpuq4b1cGwHSL_vcOhnjy9d_jed3gIXWK4xQCkZ1f1vkTxEepgEDzEGM-PUQc4j0KOGT1FZ96_AmDMoriDyHRhgsplxpks2BpbLOqmFKZamtpZHagP41RhV0VQrZtWV86fo5Ncld5cHLKLnh_up_1hOH4cjPp341BHgOMwTXQapQIrwbRgwIDjJCExUZRzAoJQkecsEyyFLMlSI3QMSapoCozlmRGCdtF161276n1jfC2X1mtTlmplqo2XhLFECL4Hb1pQu8p7Z3K5dnap3E5ikPtXZPOK_H6lYa8OUuW1KnOnVtr6vwFlEaYEGq7Xcltbmt3_QjmaTH_MYbuwvjafvwvl3mTCKIvlbDKQFIbzp1n_RU7oF6Jofv0</recordid><startdate>200207</startdate><enddate>200207</enddate><creator>Xu, Z. S.</creator><creator>Da, Q. L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200207</creationdate><title>The ordered weighted geometric averaging operators</title><author>Xu, Z. S. ; Da, Q. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4015-b6cb4b91a97c970708166252a388209239ff7d97b0d6dbe9c506ba3b077fde993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Problem solving, game playing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Z. S.</creatorcontrib><creatorcontrib>Da, Q. L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Z. S.</au><au>Da, Q. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ordered weighted geometric averaging operators</atitle><jtitle>International journal of intelligent systems</jtitle><addtitle>Int. J. Intell. Syst</addtitle><date>2002-07</date><risdate>2002</risdate><volume>17</volume><issue>7</issue><spage>709</spage><epage>716</epage><pages>709-716</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><coden>IJISED</coden><abstract>The ordered weighted averaging (OWA) operator was introduced by Yager.1 The fundamental aspect of the OWA operator is a reordering step in which the input arguments are rearranged in descending order. In this article, we propose two new classes of aggregation operators called ordered weighted geometric averaging (OWGA) operators and study some desired properties of these operators. Some methods for obtaining the associated weighting parameters are discussed, and the relationship between the OWA and DOWGA operators is also investigated. © 2002 Wiley Periodicals, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/int.10045</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2002-07, Vol.17 (7), p.709-716
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_miscellaneous_27769989
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Problem solving, game playing
title The ordered weighted geometric averaging operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ordered%20weighted%20geometric%20averaging%20operators&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Xu,%20Z.%20S.&rft.date=2002-07&rft.volume=17&rft.issue=7&rft.spage=709&rft.epage=716&rft.pages=709-716&rft.issn=0884-8173&rft.eissn=1098-111X&rft.coden=IJISED&rft_id=info:doi/10.1002/int.10045&rft_dat=%3Cproquest_cross%3E27769989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27769989&rft_id=info:pmid/&rfr_iscdi=true