The Dynamic-Q optimization method: An alternative to SQP?
In this paper, a constrained optimization method, called the Dynamic-Q method, is presented. Simply stated, the method consists of applying an existing dynamic trajectory optimization algorithm to successive spherical quadratic approximations of the actual optimization problem. The Dynamic-Q algorit...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2002-12, Vol.44 (12), p.1589-1598 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1598 |
---|---|
container_issue | 12 |
container_start_page | 1589 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 44 |
creator | Snyman, J.A. Hay, A.M. |
description | In this paper, a constrained optimization method, called the Dynamic-Q method, is presented. Simply stated, the method consists of applying an existing dynamic trajectory optimization algorithm to successive spherical quadratic approximations of the actual optimization problem. The Dynamic-Q algorithm has the advantage of having minimal storage requirements, thus making it suitable for problems with large numbers of variables. The Dynamic-Q method is tested and results obtained are compared to results for a sequential quadratic programming (SQP) method. Indications are that the new method is robust and efficient, and particularly well suited to practical engineering optimization problems. |
doi_str_mv | 10.1016/S0898-1221(02)00281-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27767715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812210200281X</els_id><sourcerecordid>27767715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-cd5ef6e4b0e5d40a76a05c8620c1645f824c62db8981d33aa838f5bae74921963</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiT6GE1yW4-1ksp9RMKWlqht5BmZ2lkd1OTtFB_vdtWvHoaGJ73ZeZB6JLgW4IJv5tiWciUUEquMb3BmEqSzo9Qj0iRpYJzeYx6f8gpOgvhE2OcZxT3UDFbQvKwbXVjTTpJ3Craxn7raF2bNBCXrrxPhm2i6wi-7dYbSKJLppP3wTk6qXQd4OJ39tHH0-Ns9JKO355fR8NxajLJYmpKBhWHfIGBlTnWgmvMjOQUG8JzVkmaG07LRXcfKbNMa5nJii00iLygpOBZH10delfefa0hRNXYYKCudQtuHRQVggtBWAeyA2i8C8FDpVbeNtpvFcFqJ0rtRamdBYWp2otS8y43OOSg-2JjwatgLLQGSuvBRFU6-0_DDx_3bog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27767715</pqid></control><display><type>article</type><title>The Dynamic-Q optimization method: An alternative to SQP?</title><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Snyman, J.A. ; Hay, A.M.</creator><creatorcontrib>Snyman, J.A. ; Hay, A.M.</creatorcontrib><description>In this paper, a constrained optimization method, called the Dynamic-Q method, is presented. Simply stated, the method consists of applying an existing dynamic trajectory optimization algorithm to successive spherical quadratic approximations of the actual optimization problem. The Dynamic-Q algorithm has the advantage of having minimal storage requirements, thus making it suitable for problems with large numbers of variables. The Dynamic-Q method is tested and results obtained are compared to results for a sequential quadratic programming (SQP) method. Indications are that the new method is robust and efficient, and particularly well suited to practical engineering optimization problems.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/S0898-1221(02)00281-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Constrained optimization ; Sequential quadratic programming ; Successive approximations</subject><ispartof>Computers & mathematics with applications (1987), 2002-12, Vol.44 (12), p.1589-1598</ispartof><rights>2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-cd5ef6e4b0e5d40a76a05c8620c1645f824c62db8981d33aa838f5bae74921963</citedby><cites>FETCH-LOGICAL-c385t-cd5ef6e4b0e5d40a76a05c8620c1645f824c62db8981d33aa838f5bae74921963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089812210200281X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Snyman, J.A.</creatorcontrib><creatorcontrib>Hay, A.M.</creatorcontrib><title>The Dynamic-Q optimization method: An alternative to SQP?</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, a constrained optimization method, called the Dynamic-Q method, is presented. Simply stated, the method consists of applying an existing dynamic trajectory optimization algorithm to successive spherical quadratic approximations of the actual optimization problem. The Dynamic-Q algorithm has the advantage of having minimal storage requirements, thus making it suitable for problems with large numbers of variables. The Dynamic-Q method is tested and results obtained are compared to results for a sequential quadratic programming (SQP) method. Indications are that the new method is robust and efficient, and particularly well suited to practical engineering optimization problems.</description><subject>Constrained optimization</subject><subject>Sequential quadratic programming</subject><subject>Successive approximations</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiT6GE1yW4-1ksp9RMKWlqht5BmZ2lkd1OTtFB_vdtWvHoaGJ73ZeZB6JLgW4IJv5tiWciUUEquMb3BmEqSzo9Qj0iRpYJzeYx6f8gpOgvhE2OcZxT3UDFbQvKwbXVjTTpJ3Craxn7raF2bNBCXrrxPhm2i6wi-7dYbSKJLppP3wTk6qXQd4OJ39tHH0-Ns9JKO355fR8NxajLJYmpKBhWHfIGBlTnWgmvMjOQUG8JzVkmaG07LRXcfKbNMa5nJii00iLygpOBZH10delfefa0hRNXYYKCudQtuHRQVggtBWAeyA2i8C8FDpVbeNtpvFcFqJ0rtRamdBYWp2otS8y43OOSg-2JjwatgLLQGSuvBRFU6-0_DDx_3bog</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Snyman, J.A.</creator><creator>Hay, A.M.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20021201</creationdate><title>The Dynamic-Q optimization method: An alternative to SQP?</title><author>Snyman, J.A. ; Hay, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-cd5ef6e4b0e5d40a76a05c8620c1645f824c62db8981d33aa838f5bae74921963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Constrained optimization</topic><topic>Sequential quadratic programming</topic><topic>Successive approximations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyman, J.A.</creatorcontrib><creatorcontrib>Hay, A.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyman, J.A.</au><au>Hay, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dynamic-Q optimization method: An alternative to SQP?</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2002-12-01</date><risdate>2002</risdate><volume>44</volume><issue>12</issue><spage>1589</spage><epage>1598</epage><pages>1589-1598</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, a constrained optimization method, called the Dynamic-Q method, is presented. Simply stated, the method consists of applying an existing dynamic trajectory optimization algorithm to successive spherical quadratic approximations of the actual optimization problem. The Dynamic-Q algorithm has the advantage of having minimal storage requirements, thus making it suitable for problems with large numbers of variables. The Dynamic-Q method is tested and results obtained are compared to results for a sequential quadratic programming (SQP) method. Indications are that the new method is robust and efficient, and particularly well suited to practical engineering optimization problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0898-1221(02)00281-X</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2002-12, Vol.44 (12), p.1589-1598 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_27767715 |
source | Elsevier ScienceDirect Journals; EZB Electronic Journals Library |
subjects | Constrained optimization Sequential quadratic programming Successive approximations |
title | The Dynamic-Q optimization method: An alternative to SQP? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dynamic-Q%20optimization%20method:%20An%20alternative%20to%20SQP?&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Snyman,%20J.A.&rft.date=2002-12-01&rft.volume=44&rft.issue=12&rft.spage=1589&rft.epage=1598&rft.pages=1589-1598&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/S0898-1221(02)00281-X&rft_dat=%3Cproquest_cross%3E27767715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27767715&rft_id=info:pmid/&rft_els_id=S089812210200281X&rfr_iscdi=true |