The Intelligent Design of High Strength, Creep-Resistant Aluminum Alloys

This paper describes a practical approach to the design of improved age-hardenable aluminum alloys for moderate temperature application. The process involves extensive empirical research with quantitative analytical techniques, theoretical simulation and modeling, and computational thermodynamics. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2002-07, Vol.396-402, p.21-30
Hauptverfasser: Starke, E.A. Jr, Zhu, Ai Wu, Gable, Brian M., Shiflet, Gary J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue
container_start_page 21
container_title Materials science forum
container_volume 396-402
creator Starke, E.A. Jr
Zhu, Ai Wu
Gable, Brian M.
Shiflet, Gary J.
description This paper describes a practical approach to the design of improved age-hardenable aluminum alloys for moderate temperature application. The process involves extensive empirical research with quantitative analytical techniques, theoretical simulation and modeling, and computational thermodynamics. Microstructure characterization and analytical transmission electron microscopy (TEM) are being employed to refine the development of the quaternary Al-Cu-Mg-Ag phase diagram. Differential scanning calorimetry (DSC) and electron diffraction are being implemented to investigate the microstructural evolution of the ternary alloys and to validate calculated equilibrium phase boundaries. Energy dispersive spectroscopy (EDS) is also being used to illustrate the effect of trace additions on the phase boundaries that are of paramount consideration for the thermal stability of this class of alloys. Computer simulation and modeling are being used to identify the microstructure that will result in the optimal combination of mechanical properties. Unavailable parameters will be calculated from first principle atomistic modeling. Once identified, the desired microstructure can be manipulated through various thermo-mechanical processing techniques in order to achieve the prescribed microstructure. This approach should prove as an example of streamlined alloy design and therefore aid in the early insertion of new high performance materials. (Example: Al-Cu alloys.)
doi_str_mv 10.4028/www.scientific.net/MSF.396-402.21
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27765980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27765980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-9d3538957e774cfe1c760f34db55ad5eecd5585b6d7b17c596c48de4526ab8ae3</originalsourceid><addsrcrecordid>eNqVkNFKwzAUhoMoOKfv0CtBsF3SNkl7Oapzg4ng5nVo09M2o0tnkjL29mZM8Nqrc-D_-TjnQ-iJ4CjFcTY7Ho-RlQq0U42SkQY3e98soiRnoc-jmFyhCWEsDnNO42s0wTGlIU05u0V31u4wTkhG2AQttx0EK-2g71XracELWNXqYGiCpWq7YOMM6NZ1z0FhAA7hp4-tK31x3o97pce9X_rhZO_RTVP2Fh5-5xR9LV63xTJcf7ytivk6lAljLszrhCZZTjlwnsoGiOQMN0laV5SWNQWQNaUZrVjNK8IlzZlMsxpSGrOyykpIpujxwj2Y4XsE68ReWenPLzUMoxUx54zmGfbF-aUozWCtgUYcjNqX5iQIFmeHwjsUfw6Fdyi8Q-EdnnMRE88oLgxnSm0dyE7shtFo_-A_KD-9QIUS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27765980</pqid></control><display><type>article</type><title>The Intelligent Design of High Strength, Creep-Resistant Aluminum Alloys</title><source>Scientific.net Journals</source><creator>Starke, E.A. Jr ; Zhu, Ai Wu ; Gable, Brian M. ; Shiflet, Gary J.</creator><creatorcontrib>Starke, E.A. Jr ; Zhu, Ai Wu ; Gable, Brian M. ; Shiflet, Gary J.</creatorcontrib><description>This paper describes a practical approach to the design of improved age-hardenable aluminum alloys for moderate temperature application. The process involves extensive empirical research with quantitative analytical techniques, theoretical simulation and modeling, and computational thermodynamics. Microstructure characterization and analytical transmission electron microscopy (TEM) are being employed to refine the development of the quaternary Al-Cu-Mg-Ag phase diagram. Differential scanning calorimetry (DSC) and electron diffraction are being implemented to investigate the microstructural evolution of the ternary alloys and to validate calculated equilibrium phase boundaries. Energy dispersive spectroscopy (EDS) is also being used to illustrate the effect of trace additions on the phase boundaries that are of paramount consideration for the thermal stability of this class of alloys. Computer simulation and modeling are being used to identify the microstructure that will result in the optimal combination of mechanical properties. Unavailable parameters will be calculated from first principle atomistic modeling. Once identified, the desired microstructure can be manipulated through various thermo-mechanical processing techniques in order to achieve the prescribed microstructure. This approach should prove as an example of streamlined alloy design and therefore aid in the early insertion of new high performance materials. (Example: Al-Cu alloys.)</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.396-402.21</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Materials science forum, 2002-07, Vol.396-402, p.21-30</ispartof><rights>2002 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-9d3538957e774cfe1c760f34db55ad5eecd5585b6d7b17c596c48de4526ab8ae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/449?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Starke, E.A. Jr</creatorcontrib><creatorcontrib>Zhu, Ai Wu</creatorcontrib><creatorcontrib>Gable, Brian M.</creatorcontrib><creatorcontrib>Shiflet, Gary J.</creatorcontrib><title>The Intelligent Design of High Strength, Creep-Resistant Aluminum Alloys</title><title>Materials science forum</title><description>This paper describes a practical approach to the design of improved age-hardenable aluminum alloys for moderate temperature application. The process involves extensive empirical research with quantitative analytical techniques, theoretical simulation and modeling, and computational thermodynamics. Microstructure characterization and analytical transmission electron microscopy (TEM) are being employed to refine the development of the quaternary Al-Cu-Mg-Ag phase diagram. Differential scanning calorimetry (DSC) and electron diffraction are being implemented to investigate the microstructural evolution of the ternary alloys and to validate calculated equilibrium phase boundaries. Energy dispersive spectroscopy (EDS) is also being used to illustrate the effect of trace additions on the phase boundaries that are of paramount consideration for the thermal stability of this class of alloys. Computer simulation and modeling are being used to identify the microstructure that will result in the optimal combination of mechanical properties. Unavailable parameters will be calculated from first principle atomistic modeling. Once identified, the desired microstructure can be manipulated through various thermo-mechanical processing techniques in order to achieve the prescribed microstructure. This approach should prove as an example of streamlined alloy design and therefore aid in the early insertion of new high performance materials. (Example: Al-Cu alloys.)</description><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqVkNFKwzAUhoMoOKfv0CtBsF3SNkl7Oapzg4ng5nVo09M2o0tnkjL29mZM8Nqrc-D_-TjnQ-iJ4CjFcTY7Ho-RlQq0U42SkQY3e98soiRnoc-jmFyhCWEsDnNO42s0wTGlIU05u0V31u4wTkhG2AQttx0EK-2g71XracELWNXqYGiCpWq7YOMM6NZ1z0FhAA7hp4-tK31x3o97pce9X_rhZO_RTVP2Fh5-5xR9LV63xTJcf7ytivk6lAljLszrhCZZTjlwnsoGiOQMN0laV5SWNQWQNaUZrVjNK8IlzZlMsxpSGrOyykpIpujxwj2Y4XsE68ReWenPLzUMoxUx54zmGfbF-aUozWCtgUYcjNqX5iQIFmeHwjsUfw6Fdyi8Q-EdnnMRE88oLgxnSm0dyE7shtFo_-A_KD-9QIUS</recordid><startdate>20020730</startdate><enddate>20020730</enddate><creator>Starke, E.A. Jr</creator><creator>Zhu, Ai Wu</creator><creator>Gable, Brian M.</creator><creator>Shiflet, Gary J.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020730</creationdate><title>The Intelligent Design of High Strength, Creep-Resistant Aluminum Alloys</title><author>Starke, E.A. Jr ; Zhu, Ai Wu ; Gable, Brian M. ; Shiflet, Gary J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-9d3538957e774cfe1c760f34db55ad5eecd5585b6d7b17c596c48de4526ab8ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starke, E.A. Jr</creatorcontrib><creatorcontrib>Zhu, Ai Wu</creatorcontrib><creatorcontrib>Gable, Brian M.</creatorcontrib><creatorcontrib>Shiflet, Gary J.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starke, E.A. Jr</au><au>Zhu, Ai Wu</au><au>Gable, Brian M.</au><au>Shiflet, Gary J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Intelligent Design of High Strength, Creep-Resistant Aluminum Alloys</atitle><jtitle>Materials science forum</jtitle><date>2002-07-30</date><risdate>2002</risdate><volume>396-402</volume><spage>21</spage><epage>30</epage><pages>21-30</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>This paper describes a practical approach to the design of improved age-hardenable aluminum alloys for moderate temperature application. The process involves extensive empirical research with quantitative analytical techniques, theoretical simulation and modeling, and computational thermodynamics. Microstructure characterization and analytical transmission electron microscopy (TEM) are being employed to refine the development of the quaternary Al-Cu-Mg-Ag phase diagram. Differential scanning calorimetry (DSC) and electron diffraction are being implemented to investigate the microstructural evolution of the ternary alloys and to validate calculated equilibrium phase boundaries. Energy dispersive spectroscopy (EDS) is also being used to illustrate the effect of trace additions on the phase boundaries that are of paramount consideration for the thermal stability of this class of alloys. Computer simulation and modeling are being used to identify the microstructure that will result in the optimal combination of mechanical properties. Unavailable parameters will be calculated from first principle atomistic modeling. Once identified, the desired microstructure can be manipulated through various thermo-mechanical processing techniques in order to achieve the prescribed microstructure. This approach should prove as an example of streamlined alloy design and therefore aid in the early insertion of new high performance materials. (Example: Al-Cu alloys.)</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.396-402.21</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2002-07, Vol.396-402, p.21-30
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_miscellaneous_27765980
source Scientific.net Journals
title The Intelligent Design of High Strength, Creep-Resistant Aluminum Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Intelligent%20Design%20of%20High%20Strength,%20Creep-Resistant%20Aluminum%20Alloys&rft.jtitle=Materials%20science%20forum&rft.au=Starke,%20E.A.%20Jr&rft.date=2002-07-30&rft.volume=396-402&rft.spage=21&rft.epage=30&rft.pages=21-30&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.396-402.21&rft_dat=%3Cproquest_cross%3E27765980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27765980&rft_id=info:pmid/&rfr_iscdi=true