Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound
Key Points Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT). Deep Learning algorithms are reliable for the assessment of plaque burden using OCT. Larger studies are necessary to validate such algorithms.
Gespeichert in:
Veröffentlicht in: | Catheterization and cardiovascular interventions 2023-02, Vol.101 (2), p.297-298 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 2 |
container_start_page | 297 |
container_title | Catheterization and cardiovascular interventions |
container_volume | 101 |
creator | Alasnag, Mirvat |
description | Key Points
Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT).
Deep Learning algorithms are reliable for the assessment of plaque burden using OCT.
Larger studies are necessary to validate such algorithms. |
doi_str_mv | 10.1002/ccd.30594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2776519713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776519713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2434-bcb6b163776fe11f437e30156a35e7b702ddb6ceac1c5780ec8c9ac54e054003</originalsourceid><addsrcrecordid>eNp1kb9uFDEQh1cIREKg4AWQJRpSXOI_a_s2XbQJEOkkKFLQrbz27J0jr73Y3ouu4xGoeTyeBB93UCBReaz59GlmflX1muALgjG91NpcMMyb-kl1SjilC0nFl6fHmjS1OKlepPSAMW4EbZ5XJ0zIpagbdlr9aMM4gs8q7q7QZ6e-zoD6ORrwCFK2o8pg0BDDiMKUrVYO6bCBCF4DymEM66imzQ492rxBNwATWoGK3vr1FbrzP79939ptQFvlrFHZBo_mVHrFEWFtUy4ig6zPUW1V0rNTEc2u_FKYvXlZPRuUS_Dq-J5V9-9v79uPi9WnD3ft9Wqhac3qRa970RPBpBQDEDLUTALDhAvFOMheYmpMLzQoTTSXSwx6qRuleQ2Y1xizs-rdQTvFULZPuRtt0uCc8hDm1NEi5qSRhBX07T_oQ5ijL8PtKUklx2xPnR8oHUNKEYZuiuWQcdcR3O3z6kpe3e-8CvvmaJz7Ecxf8k9ABbg8AI_Wwe7_pq5tbw7KX9KJo4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777275033</pqid></control><display><type>article</type><title>Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound</title><source>Access via Wiley Online Library</source><creator>Alasnag, Mirvat</creator><creatorcontrib>Alasnag, Mirvat</creatorcontrib><description>Key Points
Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT).
Deep Learning algorithms are reliable for the assessment of plaque burden using OCT.
Larger studies are necessary to validate such algorithms.</description><identifier>ISSN: 1522-1946</identifier><identifier>EISSN: 1522-726X</identifier><identifier>DOI: 10.1002/ccd.30594</identifier><identifier>PMID: 36786493</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Deep Learning ; intravascular ultrasound ; optical coherence tomography ; plaque burden</subject><ispartof>Catheterization and cardiovascular interventions, 2023-02, Vol.101 (2), p.297-298</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2434-bcb6b163776fe11f437e30156a35e7b702ddb6ceac1c5780ec8c9ac54e054003</cites><orcidid>0000-0002-8714-0334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fccd.30594$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fccd.30594$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36786493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alasnag, Mirvat</creatorcontrib><title>Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound</title><title>Catheterization and cardiovascular interventions</title><addtitle>Catheter Cardiovasc Interv</addtitle><description>Key Points
Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT).
Deep Learning algorithms are reliable for the assessment of plaque burden using OCT.
Larger studies are necessary to validate such algorithms.</description><subject>Deep Learning</subject><subject>intravascular ultrasound</subject><subject>optical coherence tomography</subject><subject>plaque burden</subject><issn>1522-1946</issn><issn>1522-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kb9uFDEQh1cIREKg4AWQJRpSXOI_a_s2XbQJEOkkKFLQrbz27J0jr73Y3ouu4xGoeTyeBB93UCBReaz59GlmflX1muALgjG91NpcMMyb-kl1SjilC0nFl6fHmjS1OKlepPSAMW4EbZ5XJ0zIpagbdlr9aMM4gs8q7q7QZ6e-zoD6ORrwCFK2o8pg0BDDiMKUrVYO6bCBCF4DymEM66imzQ492rxBNwATWoGK3vr1FbrzP79939ptQFvlrFHZBo_mVHrFEWFtUy4ig6zPUW1V0rNTEc2u_FKYvXlZPRuUS_Dq-J5V9-9v79uPi9WnD3ft9Wqhac3qRa970RPBpBQDEDLUTALDhAvFOMheYmpMLzQoTTSXSwx6qRuleQ2Y1xizs-rdQTvFULZPuRtt0uCc8hDm1NEi5qSRhBX07T_oQ5ijL8PtKUklx2xPnR8oHUNKEYZuiuWQcdcR3O3z6kpe3e-8CvvmaJz7Ecxf8k9ABbg8AI_Wwe7_pq5tbw7KX9KJo4M</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Alasnag, Mirvat</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8714-0334</orcidid></search><sort><creationdate>20230201</creationdate><title>Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound</title><author>Alasnag, Mirvat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2434-bcb6b163776fe11f437e30156a35e7b702ddb6ceac1c5780ec8c9ac54e054003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep Learning</topic><topic>intravascular ultrasound</topic><topic>optical coherence tomography</topic><topic>plaque burden</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alasnag, Mirvat</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Catheterization and cardiovascular interventions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alasnag, Mirvat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound</atitle><jtitle>Catheterization and cardiovascular interventions</jtitle><addtitle>Catheter Cardiovasc Interv</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>101</volume><issue>2</issue><spage>297</spage><epage>298</epage><pages>297-298</pages><issn>1522-1946</issn><eissn>1522-726X</eissn><abstract>Key Points
Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT).
Deep Learning algorithms are reliable for the assessment of plaque burden using OCT.
Larger studies are necessary to validate such algorithms.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36786493</pmid><doi>10.1002/ccd.30594</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-8714-0334</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1522-1946 |
ispartof | Catheterization and cardiovascular interventions, 2023-02, Vol.101 (2), p.297-298 |
issn | 1522-1946 1522-726X |
language | eng |
recordid | cdi_proquest_miscellaneous_2776519713 |
source | Access via Wiley Online Library |
subjects | Deep Learning intravascular ultrasound optical coherence tomography plaque burden |
title | Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T20%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commentary:%20Plaque%20burden%20estimated%20from%20optical%20coherence%20tomography%20with%20Deep%20Learning:%20In%E2%80%90vivo%20validation%20using%20coregistered%20intravascular%20ultrasound&rft.jtitle=Catheterization%20and%20cardiovascular%20interventions&rft.au=Alasnag,%20Mirvat&rft.date=2023-02-01&rft.volume=101&rft.issue=2&rft.spage=297&rft.epage=298&rft.pages=297-298&rft.issn=1522-1946&rft.eissn=1522-726X&rft_id=info:doi/10.1002/ccd.30594&rft_dat=%3Cproquest_cross%3E2776519713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777275033&rft_id=info:pmid/36786493&rfr_iscdi=true |