Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound

Key Points Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT). Deep Learning algorithms are reliable for the assessment of plaque burden using OCT. Larger studies are necessary to validate such algorithms.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catheterization and cardiovascular interventions 2023-02, Vol.101 (2), p.297-298
1. Verfasser: Alasnag, Mirvat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 2
container_start_page 297
container_title Catheterization and cardiovascular interventions
container_volume 101
creator Alasnag, Mirvat
description Key Points Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT). Deep Learning algorithms are reliable for the assessment of plaque burden using OCT. Larger studies are necessary to validate such algorithms.
doi_str_mv 10.1002/ccd.30594
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2776519713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776519713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2434-bcb6b163776fe11f437e30156a35e7b702ddb6ceac1c5780ec8c9ac54e054003</originalsourceid><addsrcrecordid>eNp1kb9uFDEQh1cIREKg4AWQJRpSXOI_a_s2XbQJEOkkKFLQrbz27J0jr73Y3ouu4xGoeTyeBB93UCBReaz59GlmflX1muALgjG91NpcMMyb-kl1SjilC0nFl6fHmjS1OKlepPSAMW4EbZ5XJ0zIpagbdlr9aMM4gs8q7q7QZ6e-zoD6ORrwCFK2o8pg0BDDiMKUrVYO6bCBCF4DymEM66imzQ492rxBNwATWoGK3vr1FbrzP79939ptQFvlrFHZBo_mVHrFEWFtUy4ig6zPUW1V0rNTEc2u_FKYvXlZPRuUS_Dq-J5V9-9v79uPi9WnD3ft9Wqhac3qRa970RPBpBQDEDLUTALDhAvFOMheYmpMLzQoTTSXSwx6qRuleQ2Y1xizs-rdQTvFULZPuRtt0uCc8hDm1NEi5qSRhBX07T_oQ5ijL8PtKUklx2xPnR8oHUNKEYZuiuWQcdcR3O3z6kpe3e-8CvvmaJz7Ecxf8k9ABbg8AI_Wwe7_pq5tbw7KX9KJo4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777275033</pqid></control><display><type>article</type><title>Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound</title><source>Access via Wiley Online Library</source><creator>Alasnag, Mirvat</creator><creatorcontrib>Alasnag, Mirvat</creatorcontrib><description>Key Points Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT). Deep Learning algorithms are reliable for the assessment of plaque burden using OCT. Larger studies are necessary to validate such algorithms.</description><identifier>ISSN: 1522-1946</identifier><identifier>EISSN: 1522-726X</identifier><identifier>DOI: 10.1002/ccd.30594</identifier><identifier>PMID: 36786493</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Deep Learning ; intravascular ultrasound ; optical coherence tomography ; plaque burden</subject><ispartof>Catheterization and cardiovascular interventions, 2023-02, Vol.101 (2), p.297-298</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2434-bcb6b163776fe11f437e30156a35e7b702ddb6ceac1c5780ec8c9ac54e054003</cites><orcidid>0000-0002-8714-0334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fccd.30594$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fccd.30594$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36786493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alasnag, Mirvat</creatorcontrib><title>Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound</title><title>Catheterization and cardiovascular interventions</title><addtitle>Catheter Cardiovasc Interv</addtitle><description>Key Points Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT). Deep Learning algorithms are reliable for the assessment of plaque burden using OCT. Larger studies are necessary to validate such algorithms.</description><subject>Deep Learning</subject><subject>intravascular ultrasound</subject><subject>optical coherence tomography</subject><subject>plaque burden</subject><issn>1522-1946</issn><issn>1522-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kb9uFDEQh1cIREKg4AWQJRpSXOI_a_s2XbQJEOkkKFLQrbz27J0jr73Y3ouu4xGoeTyeBB93UCBReaz59GlmflX1muALgjG91NpcMMyb-kl1SjilC0nFl6fHmjS1OKlepPSAMW4EbZ5XJ0zIpagbdlr9aMM4gs8q7q7QZ6e-zoD6ORrwCFK2o8pg0BDDiMKUrVYO6bCBCF4DymEM66imzQ492rxBNwATWoGK3vr1FbrzP79939ptQFvlrFHZBo_mVHrFEWFtUy4ig6zPUW1V0rNTEc2u_FKYvXlZPRuUS_Dq-J5V9-9v79uPi9WnD3ft9Wqhac3qRa970RPBpBQDEDLUTALDhAvFOMheYmpMLzQoTTSXSwx6qRuleQ2Y1xizs-rdQTvFULZPuRtt0uCc8hDm1NEi5qSRhBX07T_oQ5ijL8PtKUklx2xPnR8oHUNKEYZuiuWQcdcR3O3z6kpe3e-8CvvmaJz7Ecxf8k9ABbg8AI_Wwe7_pq5tbw7KX9KJo4M</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Alasnag, Mirvat</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8714-0334</orcidid></search><sort><creationdate>20230201</creationdate><title>Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound</title><author>Alasnag, Mirvat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2434-bcb6b163776fe11f437e30156a35e7b702ddb6ceac1c5780ec8c9ac54e054003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep Learning</topic><topic>intravascular ultrasound</topic><topic>optical coherence tomography</topic><topic>plaque burden</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alasnag, Mirvat</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Catheterization and cardiovascular interventions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alasnag, Mirvat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound</atitle><jtitle>Catheterization and cardiovascular interventions</jtitle><addtitle>Catheter Cardiovasc Interv</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>101</volume><issue>2</issue><spage>297</spage><epage>298</epage><pages>297-298</pages><issn>1522-1946</issn><eissn>1522-726X</eissn><abstract>Key Points Visibility of the media poses a challenge to accurate evaluation of plaque by conventional optical coherence tomography (OCT). Deep Learning algorithms are reliable for the assessment of plaque burden using OCT. Larger studies are necessary to validate such algorithms.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36786493</pmid><doi>10.1002/ccd.30594</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-8714-0334</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1522-1946
ispartof Catheterization and cardiovascular interventions, 2023-02, Vol.101 (2), p.297-298
issn 1522-1946
1522-726X
language eng
recordid cdi_proquest_miscellaneous_2776519713
source Access via Wiley Online Library
subjects Deep Learning
intravascular ultrasound
optical coherence tomography
plaque burden
title Commentary: Plaque burden estimated from optical coherence tomography with Deep Learning: In‐vivo validation using coregistered intravascular ultrasound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T20%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commentary:%20Plaque%20burden%20estimated%20from%20optical%20coherence%20tomography%20with%20Deep%20Learning:%20In%E2%80%90vivo%20validation%20using%20coregistered%20intravascular%20ultrasound&rft.jtitle=Catheterization%20and%20cardiovascular%20interventions&rft.au=Alasnag,%20Mirvat&rft.date=2023-02-01&rft.volume=101&rft.issue=2&rft.spage=297&rft.epage=298&rft.pages=297-298&rft.issn=1522-1946&rft.eissn=1522-726X&rft_id=info:doi/10.1002/ccd.30594&rft_dat=%3Cproquest_cross%3E2776519713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777275033&rft_id=info:pmid/36786493&rfr_iscdi=true