Effects of the polypeptide from peanut meal mixed fermentation on lipid metabolism and intestinal flora of hyperlipidemic mice
BACKGROUND Hyperlipidemia is one of the metabolic disorders posing great threat to human health. Our previous studies have shown that the nutritional properties of peanut meal after fermentation are markedly improved, and can effectively improve hyperlipidemia caused by high‐fat diet in mice. In thi...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2023-07, Vol.103 (9), p.4351-4359 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4359 |
---|---|
container_issue | 9 |
container_start_page | 4351 |
container_title | Journal of the science of food and agriculture |
container_volume | 103 |
creator | Ding, Haoyue Zhang, Huiwen Lu, Yaqian Jiang, Xiaoyang Liu, Qing Hu, Yingfen Sun, Haiyan Ma, Aiguo |
description | BACKGROUND
Hyperlipidemia is one of the metabolic disorders posing great threat to human health. Our previous studies have shown that the nutritional properties of peanut meal after fermentation are markedly improved, and can effectively improve hyperlipidemia caused by high‐fat diet in mice. In this study, in order to facilitate the further utilization of peanut meal, the effect of peanut polypeptide (PP) from peanut meal mixed fermentation on lipid metabolism in mice fed with high‐fat diet (HFD) and its possible mechanism were investigated. Fifty male C57BL/6J mice were randomly divided into five groups: normal control group (N), high‐fat model group (M), PP low‐dose group (PL), PP high‐dose group (PH), and atorvastatin positive control group (Y).
RESULTS
The results show that PP supplementation can effectively reduce the body weight of mice, decrease the serum total cholesterol (TC), triglyceride (TG), low‐density lipoprotein cholesterol (LDL‐C) and leptin levels (P |
doi_str_mv | 10.1002/jsfa.12500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2776517845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822202434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-c6a730bbd2379f585a3d15e47a86055bf7ef6200274d9b31c9d66805d956eebd3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rh68QdIwIsIvVaSTtJ9XJZdP1jwoJ6bdKfCZkh32iSNzsXfbmZn9eBBKKhDPfVQxUvISwYXDIC_22dnLhiXAI_IjkGvGwAGj8muDnkjWcvPyLOc9wDQ90o9JWdC6Y6LVu3Ir2vncCqZRkfLHdI1hsOKa_EWqUtxpiuaZSt0RhPo7H-ipQ7TjEsxxceF1gp-9bYCxYwx-DxTs1jql4K5-KVuuRCTOfrvqjnd0zj7qdomfE6eOBMyvnjo5-TbzfXXqw_N7ef3H68ub5tJSA3NpIwWMI6WC9072UkjLJPYatMpkHJ0Gp3i9V3d2n4UbOqtUh1I20uFOFpxTt6cvGuK37d62TD7PGEIZsG45YFrrSTTXSsr-vofdB-3VB-pVMc5B96KtlJvT9SUYs4J3bAmP5t0GBgMx1SGYyrDfSoVfvWg3MYZ7V_0TwwVYCfghw94-I9q-PTl5vIk_Q3Baphv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822202434</pqid></control><display><type>article</type><title>Effects of the polypeptide from peanut meal mixed fermentation on lipid metabolism and intestinal flora of hyperlipidemic mice</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ding, Haoyue ; Zhang, Huiwen ; Lu, Yaqian ; Jiang, Xiaoyang ; Liu, Qing ; Hu, Yingfen ; Sun, Haiyan ; Ma, Aiguo</creator><creatorcontrib>Ding, Haoyue ; Zhang, Huiwen ; Lu, Yaqian ; Jiang, Xiaoyang ; Liu, Qing ; Hu, Yingfen ; Sun, Haiyan ; Ma, Aiguo</creatorcontrib><description>BACKGROUND
Hyperlipidemia is one of the metabolic disorders posing great threat to human health. Our previous studies have shown that the nutritional properties of peanut meal after fermentation are markedly improved, and can effectively improve hyperlipidemia caused by high‐fat diet in mice. In this study, in order to facilitate the further utilization of peanut meal, the effect of peanut polypeptide (PP) from peanut meal mixed fermentation on lipid metabolism in mice fed with high‐fat diet (HFD) and its possible mechanism were investigated. Fifty male C57BL/6J mice were randomly divided into five groups: normal control group (N), high‐fat model group (M), PP low‐dose group (PL), PP high‐dose group (PH), and atorvastatin positive control group (Y).
RESULTS
The results show that PP supplementation can effectively reduce the body weight of mice, decrease the serum total cholesterol (TC), triglyceride (TG), low‐density lipoprotein cholesterol (LDL‐C) and leptin levels (P < 0.05), increase the high‐density lipoprotein cholesterol (HDL‐C) levels (P < 0.05), up‐regulate the expression levels of ileal tight junction proteins ZO‐1 and occludin (P < 0.05), reduce the hepatocyte injury and lipid accumulation caused by high‐fat diet and increase the species richness of intestinal flora.
CONCLUSION
PP can significantly improve hyperlipidemia and regulate intestinal flora disorders caused by hyperlipidemia. The possible mechanism may be related to the reduction of serum leptin levels and up‐regulating the expression levels of the ileal tight junction proteins ZO‐1 and occludin. This study provides evidence for its regulatory role in lipid metabolism and intestinal function, and provides a research basis for the potential nutritional benefits of underutilized food by‐products. © 2023 Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.12500</identifier><identifier>PMID: 36782346</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; Arachis - metabolism ; Atorvastatin ; Body weight ; Cholesterol ; Cholesterol, LDL - metabolism ; Density ; Diet ; Diet, High-Fat - adverse effects ; Fermentation ; Flora ; Gastrointestinal Microbiome ; High density lipoprotein ; High fat diet ; high‐fat model ; Humans ; Hyperlipidemia ; Hyperlipidemias - drug therapy ; Hyperlipidemias - etiology ; Hyperlipidemias - metabolism ; Injury prevention ; intestinal flora ; Intestinal microflora ; Intestine ; Legumes ; Leptin ; Leptin - metabolism ; Leptin - pharmacology ; Lipid Metabolism ; Lipids ; Liver - metabolism ; Low density lipoprotein ; Male ; Metabolic disorders ; Metabolism ; Mice ; Mice, Inbred C57BL ; Occludin ; peanut polypeptide ; Peanuts ; Polypeptides ; Proteins ; Species richness ; Triglycerides</subject><ispartof>Journal of the science of food and agriculture, 2023-07, Vol.103 (9), p.4351-4359</ispartof><rights>2023 Society of Chemical Industry.</rights><rights>Copyright © 2023 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-c6a730bbd2379f585a3d15e47a86055bf7ef6200274d9b31c9d66805d956eebd3</citedby><cites>FETCH-LOGICAL-c3570-c6a730bbd2379f585a3d15e47a86055bf7ef6200274d9b31c9d66805d956eebd3</cites><orcidid>0000-0002-4283-7322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.12500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.12500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36782346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Haoyue</creatorcontrib><creatorcontrib>Zhang, Huiwen</creatorcontrib><creatorcontrib>Lu, Yaqian</creatorcontrib><creatorcontrib>Jiang, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Hu, Yingfen</creatorcontrib><creatorcontrib>Sun, Haiyan</creatorcontrib><creatorcontrib>Ma, Aiguo</creatorcontrib><title>Effects of the polypeptide from peanut meal mixed fermentation on lipid metabolism and intestinal flora of hyperlipidemic mice</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
Hyperlipidemia is one of the metabolic disorders posing great threat to human health. Our previous studies have shown that the nutritional properties of peanut meal after fermentation are markedly improved, and can effectively improve hyperlipidemia caused by high‐fat diet in mice. In this study, in order to facilitate the further utilization of peanut meal, the effect of peanut polypeptide (PP) from peanut meal mixed fermentation on lipid metabolism in mice fed with high‐fat diet (HFD) and its possible mechanism were investigated. Fifty male C57BL/6J mice were randomly divided into five groups: normal control group (N), high‐fat model group (M), PP low‐dose group (PL), PP high‐dose group (PH), and atorvastatin positive control group (Y).
RESULTS
The results show that PP supplementation can effectively reduce the body weight of mice, decrease the serum total cholesterol (TC), triglyceride (TG), low‐density lipoprotein cholesterol (LDL‐C) and leptin levels (P < 0.05), increase the high‐density lipoprotein cholesterol (HDL‐C) levels (P < 0.05), up‐regulate the expression levels of ileal tight junction proteins ZO‐1 and occludin (P < 0.05), reduce the hepatocyte injury and lipid accumulation caused by high‐fat diet and increase the species richness of intestinal flora.
CONCLUSION
PP can significantly improve hyperlipidemia and regulate intestinal flora disorders caused by hyperlipidemia. The possible mechanism may be related to the reduction of serum leptin levels and up‐regulating the expression levels of the ileal tight junction proteins ZO‐1 and occludin. This study provides evidence for its regulatory role in lipid metabolism and intestinal function, and provides a research basis for the potential nutritional benefits of underutilized food by‐products. © 2023 Society of Chemical Industry.</description><subject>Animals</subject><subject>Arachis - metabolism</subject><subject>Atorvastatin</subject><subject>Body weight</subject><subject>Cholesterol</subject><subject>Cholesterol, LDL - metabolism</subject><subject>Density</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Fermentation</subject><subject>Flora</subject><subject>Gastrointestinal Microbiome</subject><subject>High density lipoprotein</subject><subject>High fat diet</subject><subject>high‐fat model</subject><subject>Humans</subject><subject>Hyperlipidemia</subject><subject>Hyperlipidemias - drug therapy</subject><subject>Hyperlipidemias - etiology</subject><subject>Hyperlipidemias - metabolism</subject><subject>Injury prevention</subject><subject>intestinal flora</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Legumes</subject><subject>Leptin</subject><subject>Leptin - metabolism</subject><subject>Leptin - pharmacology</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Liver - metabolism</subject><subject>Low density lipoprotein</subject><subject>Male</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Occludin</subject><subject>peanut polypeptide</subject><subject>Peanuts</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Species richness</subject><subject>Triglycerides</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEQhoMo7rh68QdIwIsIvVaSTtJ9XJZdP1jwoJ6bdKfCZkh32iSNzsXfbmZn9eBBKKhDPfVQxUvISwYXDIC_22dnLhiXAI_IjkGvGwAGj8muDnkjWcvPyLOc9wDQ90o9JWdC6Y6LVu3Ir2vncCqZRkfLHdI1hsOKa_EWqUtxpiuaZSt0RhPo7H-ipQ7TjEsxxceF1gp-9bYCxYwx-DxTs1jql4K5-KVuuRCTOfrvqjnd0zj7qdomfE6eOBMyvnjo5-TbzfXXqw_N7ef3H68ub5tJSA3NpIwWMI6WC9072UkjLJPYatMpkHJ0Gp3i9V3d2n4UbOqtUh1I20uFOFpxTt6cvGuK37d62TD7PGEIZsG45YFrrSTTXSsr-vofdB-3VB-pVMc5B96KtlJvT9SUYs4J3bAmP5t0GBgMx1SGYyrDfSoVfvWg3MYZ7V_0TwwVYCfghw94-I9q-PTl5vIk_Q3Baphv</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Ding, Haoyue</creator><creator>Zhang, Huiwen</creator><creator>Lu, Yaqian</creator><creator>Jiang, Xiaoyang</creator><creator>Liu, Qing</creator><creator>Hu, Yingfen</creator><creator>Sun, Haiyan</creator><creator>Ma, Aiguo</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4283-7322</orcidid></search><sort><creationdate>202307</creationdate><title>Effects of the polypeptide from peanut meal mixed fermentation on lipid metabolism and intestinal flora of hyperlipidemic mice</title><author>Ding, Haoyue ; Zhang, Huiwen ; Lu, Yaqian ; Jiang, Xiaoyang ; Liu, Qing ; Hu, Yingfen ; Sun, Haiyan ; Ma, Aiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-c6a730bbd2379f585a3d15e47a86055bf7ef6200274d9b31c9d66805d956eebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Arachis - metabolism</topic><topic>Atorvastatin</topic><topic>Body weight</topic><topic>Cholesterol</topic><topic>Cholesterol, LDL - metabolism</topic><topic>Density</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Fermentation</topic><topic>Flora</topic><topic>Gastrointestinal Microbiome</topic><topic>High density lipoprotein</topic><topic>High fat diet</topic><topic>high‐fat model</topic><topic>Humans</topic><topic>Hyperlipidemia</topic><topic>Hyperlipidemias - drug therapy</topic><topic>Hyperlipidemias - etiology</topic><topic>Hyperlipidemias - metabolism</topic><topic>Injury prevention</topic><topic>intestinal flora</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Legumes</topic><topic>Leptin</topic><topic>Leptin - metabolism</topic><topic>Leptin - pharmacology</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Liver - metabolism</topic><topic>Low density lipoprotein</topic><topic>Male</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Occludin</topic><topic>peanut polypeptide</topic><topic>Peanuts</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Species richness</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Haoyue</creatorcontrib><creatorcontrib>Zhang, Huiwen</creatorcontrib><creatorcontrib>Lu, Yaqian</creatorcontrib><creatorcontrib>Jiang, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Hu, Yingfen</creatorcontrib><creatorcontrib>Sun, Haiyan</creatorcontrib><creatorcontrib>Ma, Aiguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Haoyue</au><au>Zhang, Huiwen</au><au>Lu, Yaqian</au><au>Jiang, Xiaoyang</au><au>Liu, Qing</au><au>Hu, Yingfen</au><au>Sun, Haiyan</au><au>Ma, Aiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of the polypeptide from peanut meal mixed fermentation on lipid metabolism and intestinal flora of hyperlipidemic mice</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2023-07</date><risdate>2023</risdate><volume>103</volume><issue>9</issue><spage>4351</spage><epage>4359</epage><pages>4351-4359</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
Hyperlipidemia is one of the metabolic disorders posing great threat to human health. Our previous studies have shown that the nutritional properties of peanut meal after fermentation are markedly improved, and can effectively improve hyperlipidemia caused by high‐fat diet in mice. In this study, in order to facilitate the further utilization of peanut meal, the effect of peanut polypeptide (PP) from peanut meal mixed fermentation on lipid metabolism in mice fed with high‐fat diet (HFD) and its possible mechanism were investigated. Fifty male C57BL/6J mice were randomly divided into five groups: normal control group (N), high‐fat model group (M), PP low‐dose group (PL), PP high‐dose group (PH), and atorvastatin positive control group (Y).
RESULTS
The results show that PP supplementation can effectively reduce the body weight of mice, decrease the serum total cholesterol (TC), triglyceride (TG), low‐density lipoprotein cholesterol (LDL‐C) and leptin levels (P < 0.05), increase the high‐density lipoprotein cholesterol (HDL‐C) levels (P < 0.05), up‐regulate the expression levels of ileal tight junction proteins ZO‐1 and occludin (P < 0.05), reduce the hepatocyte injury and lipid accumulation caused by high‐fat diet and increase the species richness of intestinal flora.
CONCLUSION
PP can significantly improve hyperlipidemia and regulate intestinal flora disorders caused by hyperlipidemia. The possible mechanism may be related to the reduction of serum leptin levels and up‐regulating the expression levels of the ileal tight junction proteins ZO‐1 and occludin. This study provides evidence for its regulatory role in lipid metabolism and intestinal function, and provides a research basis for the potential nutritional benefits of underutilized food by‐products. © 2023 Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>36782346</pmid><doi>10.1002/jsfa.12500</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4283-7322</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2023-07, Vol.103 (9), p.4351-4359 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_2776517845 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Arachis - metabolism Atorvastatin Body weight Cholesterol Cholesterol, LDL - metabolism Density Diet Diet, High-Fat - adverse effects Fermentation Flora Gastrointestinal Microbiome High density lipoprotein High fat diet high‐fat model Humans Hyperlipidemia Hyperlipidemias - drug therapy Hyperlipidemias - etiology Hyperlipidemias - metabolism Injury prevention intestinal flora Intestinal microflora Intestine Legumes Leptin Leptin - metabolism Leptin - pharmacology Lipid Metabolism Lipids Liver - metabolism Low density lipoprotein Male Metabolic disorders Metabolism Mice Mice, Inbred C57BL Occludin peanut polypeptide Peanuts Polypeptides Proteins Species richness Triglycerides |
title | Effects of the polypeptide from peanut meal mixed fermentation on lipid metabolism and intestinal flora of hyperlipidemic mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20the%20polypeptide%20from%20peanut%20meal%20mixed%20fermentation%20on%20lipid%20metabolism%20and%20intestinal%20flora%20of%20hyperlipidemic%20mice&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Ding,%20Haoyue&rft.date=2023-07&rft.volume=103&rft.issue=9&rft.spage=4351&rft.epage=4359&rft.pages=4351-4359&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.12500&rft_dat=%3Cproquest_cross%3E2822202434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822202434&rft_id=info:pmid/36782346&rfr_iscdi=true |