The moment finite-element scheme in problems of nonlinear continuum mechanics
The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element sche...
Gespeichert in:
Veröffentlicht in: | International applied mechanics 2002-06, Vol.38 (6), p.658-692 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 6 |
container_start_page | 658 |
container_title | International applied mechanics |
container_volume | 38 |
creator | BAZHENOV, V. A SAKHAROV, A. S TSYKHANOVSKII, V. K |
description | The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element schemes. The basic relationships for studying the nonlinear deformation and distortion of mechanical continuum systems are formulated in an invariant tensor form. Also, some mathematical algorithms specially developed to solve systems of nonlinear equations of high order are described. The numerical solutions obtained are proved reliable and rapidly converging to the exact solutions for a sufficient number of test problems. Results of strength, postbuckling stability, vibration, fracture, and high-speed influence analyses of real mechanical systems are illustrated. |
doi_str_mv | 10.1023/A:1020424710876 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27762023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27762023</sourcerecordid><originalsourceid>FETCH-LOGICAL-p214t-63db67068feb2a53d0688bdfe9d24da123be44f113f63b0c12bbb07320eab8693</originalsourceid><addsrcrecordid>eNotkDtPxDAQhC0EEsdBTesGusD6EduhO514SYdojjqynbXOKHGOOCn491hANd-sRqvREHLN4I4BF_ebhyIgudQMjFYnZMVqLSpTG35aGJSoNDT1ObnI-RMAGq2bFXnbH5AO44BppiGmOGOFPf7a7A8FaEz0OI2uHDMdA01j6mNCO1E_pjmmZRnogP5gU_T5kpwF22e8-tc1-Xh63G9fqt378-t2s6uOnMm5UqJzSoMyAR23tegKGtcFbDouO8u4cChlYEwEJRx4xp1zoAUHtM6oRqzJ7d_f0uxrwTy3Q8we-94mHJfccq0VL6OU4M1_0GZv-zDZ5GNuj1Mc7PTdMik0M1CLH3_LXtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27762023</pqid></control><display><type>article</type><title>The moment finite-element scheme in problems of nonlinear continuum mechanics</title><source>SpringerLink Journals - AutoHoldings</source><creator>BAZHENOV, V. A ; SAKHAROV, A. S ; TSYKHANOVSKII, V. K</creator><creatorcontrib>BAZHENOV, V. A ; SAKHAROV, A. S ; TSYKHANOVSKII, V. K</creatorcontrib><description>The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element schemes. The basic relationships for studying the nonlinear deformation and distortion of mechanical continuum systems are formulated in an invariant tensor form. Also, some mathematical algorithms specially developed to solve systems of nonlinear equations of high order are described. The numerical solutions obtained are proved reliable and rapidly converging to the exact solutions for a sufficient number of test problems. Results of strength, postbuckling stability, vibration, fracture, and high-speed influence analyses of real mechanical systems are illustrated.</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1023/A:1020424710876</identifier><identifier>CODEN: IAMEEU</identifier><language>eng</language><publisher>London: Consultants Bureau</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Computational techniques ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural analysis. Stresses ; Structural and continuum mechanics</subject><ispartof>International applied mechanics, 2002-06, Vol.38 (6), p.658-692</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14371805$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BAZHENOV, V. A</creatorcontrib><creatorcontrib>SAKHAROV, A. S</creatorcontrib><creatorcontrib>TSYKHANOVSKII, V. K</creatorcontrib><title>The moment finite-element scheme in problems of nonlinear continuum mechanics</title><title>International applied mechanics</title><description>The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element schemes. The basic relationships for studying the nonlinear deformation and distortion of mechanical continuum systems are formulated in an invariant tensor form. Also, some mathematical algorithms specially developed to solve systems of nonlinear equations of high order are described. The numerical solutions obtained are proved reliable and rapidly converging to the exact solutions for a sufficient number of test problems. Results of strength, postbuckling stability, vibration, fracture, and high-speed influence analyses of real mechanical systems are illustrated.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural analysis. Stresses</subject><subject>Structural and continuum mechanics</subject><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotkDtPxDAQhC0EEsdBTesGusD6EduhO514SYdojjqynbXOKHGOOCn491hANd-sRqvREHLN4I4BF_ebhyIgudQMjFYnZMVqLSpTG35aGJSoNDT1ObnI-RMAGq2bFXnbH5AO44BppiGmOGOFPf7a7A8FaEz0OI2uHDMdA01j6mNCO1E_pjmmZRnogP5gU_T5kpwF22e8-tc1-Xh63G9fqt378-t2s6uOnMm5UqJzSoMyAR23tegKGtcFbDouO8u4cChlYEwEJRx4xp1zoAUHtM6oRqzJ7d_f0uxrwTy3Q8we-94mHJfccq0VL6OU4M1_0GZv-zDZ5GNuj1Mc7PTdMik0M1CLH3_LXtA</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>BAZHENOV, V. A</creator><creator>SAKHAROV, A. S</creator><creator>TSYKHANOVSKII, V. K</creator><general>Consultants Bureau</general><scope>IQODW</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>The moment finite-element scheme in problems of nonlinear continuum mechanics</title><author>BAZHENOV, V. A ; SAKHAROV, A. S ; TSYKHANOVSKII, V. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p214t-63db67068feb2a53d0688bdfe9d24da123be44f113f63b0c12bbb07320eab8693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural analysis. Stresses</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAZHENOV, V. A</creatorcontrib><creatorcontrib>SAKHAROV, A. S</creatorcontrib><creatorcontrib>TSYKHANOVSKII, V. K</creatorcontrib><collection>Pascal-Francis</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAZHENOV, V. A</au><au>SAKHAROV, A. S</au><au>TSYKHANOVSKII, V. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The moment finite-element scheme in problems of nonlinear continuum mechanics</atitle><jtitle>International applied mechanics</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>38</volume><issue>6</issue><spage>658</spage><epage>692</epage><pages>658-692</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><coden>IAMEEU</coden><abstract>The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element schemes. The basic relationships for studying the nonlinear deformation and distortion of mechanical continuum systems are formulated in an invariant tensor form. Also, some mathematical algorithms specially developed to solve systems of nonlinear equations of high order are described. The numerical solutions obtained are proved reliable and rapidly converging to the exact solutions for a sufficient number of test problems. Results of strength, postbuckling stability, vibration, fracture, and high-speed influence analyses of real mechanical systems are illustrated.</abstract><cop>London</cop><cop>New York, NY</cop><pub>Consultants Bureau</pub><doi>10.1023/A:1020424710876</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7095 |
ispartof | International applied mechanics, 2002-06, Vol.38 (6), p.658-692 |
issn | 1063-7095 1573-8582 |
language | eng |
recordid | cdi_proquest_miscellaneous_27762023 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Buildings. Public works Computation methods. Tables. Charts Computational techniques Exact sciences and technology Finite-element and galerkin methods Fundamental areas of phenomenology (including applications) Mathematical methods in physics Physics Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural analysis. Stresses Structural and continuum mechanics |
title | The moment finite-element scheme in problems of nonlinear continuum mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20moment%20finite-element%20scheme%20in%20problems%20of%20nonlinear%20continuum%20mechanics&rft.jtitle=International%20applied%20mechanics&rft.au=BAZHENOV,%20V.%20A&rft.date=2002-06-01&rft.volume=38&rft.issue=6&rft.spage=658&rft.epage=692&rft.pages=658-692&rft.issn=1063-7095&rft.eissn=1573-8582&rft.coden=IAMEEU&rft_id=info:doi/10.1023/A:1020424710876&rft_dat=%3Cproquest_pasca%3E27762023%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27762023&rft_id=info:pmid/&rfr_iscdi=true |