The moment finite-element scheme in problems of nonlinear continuum mechanics

The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element sche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International applied mechanics 2002-06, Vol.38 (6), p.658-692
Hauptverfasser: BAZHENOV, V. A, SAKHAROV, A. S, TSYKHANOVSKII, V. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 6
container_start_page 658
container_title International applied mechanics
container_volume 38
creator BAZHENOV, V. A
SAKHAROV, A. S
TSYKHANOVSKII, V. K
description The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element schemes. The basic relationships for studying the nonlinear deformation and distortion of mechanical continuum systems are formulated in an invariant tensor form. Also, some mathematical algorithms specially developed to solve systems of nonlinear equations of high order are described. The numerical solutions obtained are proved reliable and rapidly converging to the exact solutions for a sufficient number of test problems. Results of strength, postbuckling stability, vibration, fracture, and high-speed influence analyses of real mechanical systems are illustrated.
doi_str_mv 10.1023/A:1020424710876
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27762023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27762023</sourcerecordid><originalsourceid>FETCH-LOGICAL-p214t-63db67068feb2a53d0688bdfe9d24da123be44f113f63b0c12bbb07320eab8693</originalsourceid><addsrcrecordid>eNotkDtPxDAQhC0EEsdBTesGusD6EduhO514SYdojjqynbXOKHGOOCn491hANd-sRqvREHLN4I4BF_ebhyIgudQMjFYnZMVqLSpTG35aGJSoNDT1ObnI-RMAGq2bFXnbH5AO44BppiGmOGOFPf7a7A8FaEz0OI2uHDMdA01j6mNCO1E_pjmmZRnogP5gU_T5kpwF22e8-tc1-Xh63G9fqt378-t2s6uOnMm5UqJzSoMyAR23tegKGtcFbDouO8u4cChlYEwEJRx4xp1zoAUHtM6oRqzJ7d_f0uxrwTy3Q8we-94mHJfccq0VL6OU4M1_0GZv-zDZ5GNuj1Mc7PTdMik0M1CLH3_LXtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27762023</pqid></control><display><type>article</type><title>The moment finite-element scheme in problems of nonlinear continuum mechanics</title><source>SpringerLink Journals - AutoHoldings</source><creator>BAZHENOV, V. A ; SAKHAROV, A. S ; TSYKHANOVSKII, V. K</creator><creatorcontrib>BAZHENOV, V. A ; SAKHAROV, A. S ; TSYKHANOVSKII, V. K</creatorcontrib><description>The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element schemes. The basic relationships for studying the nonlinear deformation and distortion of mechanical continuum systems are formulated in an invariant tensor form. Also, some mathematical algorithms specially developed to solve systems of nonlinear equations of high order are described. The numerical solutions obtained are proved reliable and rapidly converging to the exact solutions for a sufficient number of test problems. Results of strength, postbuckling stability, vibration, fracture, and high-speed influence analyses of real mechanical systems are illustrated.</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1023/A:1020424710876</identifier><identifier>CODEN: IAMEEU</identifier><language>eng</language><publisher>London: Consultants Bureau</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Computational techniques ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural analysis. Stresses ; Structural and continuum mechanics</subject><ispartof>International applied mechanics, 2002-06, Vol.38 (6), p.658-692</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14371805$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BAZHENOV, V. A</creatorcontrib><creatorcontrib>SAKHAROV, A. S</creatorcontrib><creatorcontrib>TSYKHANOVSKII, V. K</creatorcontrib><title>The moment finite-element scheme in problems of nonlinear continuum mechanics</title><title>International applied mechanics</title><description>The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element schemes. The basic relationships for studying the nonlinear deformation and distortion of mechanical continuum systems are formulated in an invariant tensor form. Also, some mathematical algorithms specially developed to solve systems of nonlinear equations of high order are described. The numerical solutions obtained are proved reliable and rapidly converging to the exact solutions for a sufficient number of test problems. Results of strength, postbuckling stability, vibration, fracture, and high-speed influence analyses of real mechanical systems are illustrated.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural analysis. Stresses</subject><subject>Structural and continuum mechanics</subject><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotkDtPxDAQhC0EEsdBTesGusD6EduhO514SYdojjqynbXOKHGOOCn491hANd-sRqvREHLN4I4BF_ebhyIgudQMjFYnZMVqLSpTG35aGJSoNDT1ObnI-RMAGq2bFXnbH5AO44BppiGmOGOFPf7a7A8FaEz0OI2uHDMdA01j6mNCO1E_pjmmZRnogP5gU_T5kpwF22e8-tc1-Xh63G9fqt378-t2s6uOnMm5UqJzSoMyAR23tegKGtcFbDouO8u4cChlYEwEJRx4xp1zoAUHtM6oRqzJ7d_f0uxrwTy3Q8we-94mHJfccq0VL6OU4M1_0GZv-zDZ5GNuj1Mc7PTdMik0M1CLH3_LXtA</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>BAZHENOV, V. A</creator><creator>SAKHAROV, A. S</creator><creator>TSYKHANOVSKII, V. K</creator><general>Consultants Bureau</general><scope>IQODW</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>The moment finite-element scheme in problems of nonlinear continuum mechanics</title><author>BAZHENOV, V. A ; SAKHAROV, A. S ; TSYKHANOVSKII, V. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p214t-63db67068feb2a53d0688bdfe9d24da123be44f113f63b0c12bbb07320eab8693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural analysis. Stresses</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAZHENOV, V. A</creatorcontrib><creatorcontrib>SAKHAROV, A. S</creatorcontrib><creatorcontrib>TSYKHANOVSKII, V. K</creatorcontrib><collection>Pascal-Francis</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAZHENOV, V. A</au><au>SAKHAROV, A. S</au><au>TSYKHANOVSKII, V. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The moment finite-element scheme in problems of nonlinear continuum mechanics</atitle><jtitle>International applied mechanics</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>38</volume><issue>6</issue><spage>658</spage><epage>692</epage><pages>658-692</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><coden>IAMEEU</coden><abstract>The conceptual and theoretical fundamentals of the original moment finite-element scheme (MFES) developed to solve problems of nonlinear continuum mechanics are presented. Typical examples of model problems are given to illustrate the advantages of the MFES over other traditional finite-element schemes. The basic relationships for studying the nonlinear deformation and distortion of mechanical continuum systems are formulated in an invariant tensor form. Also, some mathematical algorithms specially developed to solve systems of nonlinear equations of high order are described. The numerical solutions obtained are proved reliable and rapidly converging to the exact solutions for a sufficient number of test problems. Results of strength, postbuckling stability, vibration, fracture, and high-speed influence analyses of real mechanical systems are illustrated.</abstract><cop>London</cop><cop>New York, NY</cop><pub>Consultants Bureau</pub><doi>10.1023/A:1020424710876</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7095
ispartof International applied mechanics, 2002-06, Vol.38 (6), p.658-692
issn 1063-7095
1573-8582
language eng
recordid cdi_proquest_miscellaneous_27762023
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Computational techniques
Exact sciences and technology
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural analysis. Stresses
Structural and continuum mechanics
title The moment finite-element scheme in problems of nonlinear continuum mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20moment%20finite-element%20scheme%20in%20problems%20of%20nonlinear%20continuum%20mechanics&rft.jtitle=International%20applied%20mechanics&rft.au=BAZHENOV,%20V.%20A&rft.date=2002-06-01&rft.volume=38&rft.issue=6&rft.spage=658&rft.epage=692&rft.pages=658-692&rft.issn=1063-7095&rft.eissn=1573-8582&rft.coden=IAMEEU&rft_id=info:doi/10.1023/A:1020424710876&rft_dat=%3Cproquest_pasca%3E27762023%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27762023&rft_id=info:pmid/&rfr_iscdi=true