Resilience and risk analysis of fault-tolerant process control design in continuous pharmaceutical manufacturing

The shift from batch to continuous manufacturing, which is occurring in the pharmaceutical manufacturing industry has implications on process safety and product quality. It is now understood that fault-tolerant process control of critical process parameters (CPPs) and critical quality attributes (CQ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of loss prevention in the process industries 2018-09, Vol.55, p.411-422
Hauptverfasser: Su, Qinglin, Moreno, Mariana, Ganesh, Sudarshan, Reklaitis, Gintaras V., Nagy, Zoltan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue
container_start_page 411
container_title Journal of loss prevention in the process industries
container_volume 55
creator Su, Qinglin
Moreno, Mariana
Ganesh, Sudarshan
Reklaitis, Gintaras V.
Nagy, Zoltan K.
description The shift from batch to continuous manufacturing, which is occurring in the pharmaceutical manufacturing industry has implications on process safety and product quality. It is now understood that fault-tolerant process control of critical process parameters (CPPs) and critical quality attributes (CQAs) is of paramount importance to the realization of safe operations and quality products. In this study, a systematic framework for fault-tolerant process control system design, analysis, and evaluation of pharmaceutical continuous oral solid dosage manufacturing is proposed. The framework encompasses system identification, controller design and analysis (controllability, stability, resilience, etc.), hierarchical three-level control structures (model predictive control, state estimation, data reconciliation, etc.), risk mapping, assessment and planning (Risk MAP) strategies, and control performance evaluation. The key idea of the proposed framework is to identify the potential risks associated with the control system design itself, the material property variations, and other process uncertainties, under which the control strategies must be evaluated. The framework is applied to a continuous direct compaction process, specifically the feeding-blending subsystem, wherein the major source of variance in the process operation and product quality arises. It is demonstrated, using simulations and experimentally, that the process operation failures and product quality variations in the feeding-blending system can be mitigated and managed through the proposed systematic fault-tolerant process control system design and risk analysis framework. •Systematic risk-based control design in pharmaceutical continuous manufacturing.•Risks evaluated in feeding & blending subsystem of a direct compaction process.•Framework is demonstrated in flowsheet simulations and pilot-plant experiments.
doi_str_mv 10.1016/j.jlp.2018.07.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775954390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950423018303310</els_id><sourcerecordid>2775954390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-a85b14a413195cc2885f738977f2921ad3e5e451731f1d1377bdd55e5fd5ddce3</originalsourceid><addsrcrecordid>eNp9kEtPxSAQhVlovL5-gBvD0k0rlCJtXBnjKzExMbomXBiuXCmtQE3896JXXbqayeSckzMfQkeU1JTQs9N1vfZT3RDa1UTUhPIttEt6Tqq2YWSB9lJaE0IF6cQOWrAzIQThZBdNj5CcdxA0YBUMji69lkX5j-QSHi22ava5yqOHqELGUxw1pIT1GHIcPTbFvgrYhe-LC_M4Jzy9qDgoDXN2Wnk8qDBbpfMcXVgdoG2rfILDn7mPnq-vni5vq_uHm7vLi_tKt7zPler4kraqpYz2XOum67gVrOuFsE3fUGUYcGg5FYxaaigTYmkM58Ct4cZoYPvoZJNbGr_NkLIcXNLgvQpQOspGCN7zlvWkSOlGquOYUgQrp-gGFT8kJfILrlzLAld-wZVEyAK3eI5_4uflAObP8Uu2CM43AihPvjuIMulvzMZF0Fma0f0T_wnx8I7-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775954390</pqid></control><display><type>article</type><title>Resilience and risk analysis of fault-tolerant process control design in continuous pharmaceutical manufacturing</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Su, Qinglin ; Moreno, Mariana ; Ganesh, Sudarshan ; Reklaitis, Gintaras V. ; Nagy, Zoltan K.</creator><creatorcontrib>Su, Qinglin ; Moreno, Mariana ; Ganesh, Sudarshan ; Reklaitis, Gintaras V. ; Nagy, Zoltan K.</creatorcontrib><description>The shift from batch to continuous manufacturing, which is occurring in the pharmaceutical manufacturing industry has implications on process safety and product quality. It is now understood that fault-tolerant process control of critical process parameters (CPPs) and critical quality attributes (CQAs) is of paramount importance to the realization of safe operations and quality products. In this study, a systematic framework for fault-tolerant process control system design, analysis, and evaluation of pharmaceutical continuous oral solid dosage manufacturing is proposed. The framework encompasses system identification, controller design and analysis (controllability, stability, resilience, etc.), hierarchical three-level control structures (model predictive control, state estimation, data reconciliation, etc.), risk mapping, assessment and planning (Risk MAP) strategies, and control performance evaluation. The key idea of the proposed framework is to identify the potential risks associated with the control system design itself, the material property variations, and other process uncertainties, under which the control strategies must be evaluated. The framework is applied to a continuous direct compaction process, specifically the feeding-blending subsystem, wherein the major source of variance in the process operation and product quality arises. It is demonstrated, using simulations and experimentally, that the process operation failures and product quality variations in the feeding-blending system can be mitigated and managed through the proposed systematic fault-tolerant process control system design and risk analysis framework. •Systematic risk-based control design in pharmaceutical continuous manufacturing.•Risks evaluated in feeding &amp; blending subsystem of a direct compaction process.•Framework is demonstrated in flowsheet simulations and pilot-plant experiments.</description><identifier>ISSN: 0950-4230</identifier><identifier>DOI: 10.1016/j.jlp.2018.07.015</identifier><identifier>PMID: 36777050</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Continuous manufacturing ; Pharmaceutics ; Process control ; Resilience ; Risk analysis</subject><ispartof>Journal of loss prevention in the process industries, 2018-09, Vol.55, p.411-422</ispartof><rights>2018 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-a85b14a413195cc2885f738977f2921ad3e5e451731f1d1377bdd55e5fd5ddce3</citedby><cites>FETCH-LOGICAL-c459t-a85b14a413195cc2885f738977f2921ad3e5e451731f1d1377bdd55e5fd5ddce3</cites><orcidid>0000-0002-1545-342X ; 0000-0003-1710-6920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jlp.2018.07.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36777050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Qinglin</creatorcontrib><creatorcontrib>Moreno, Mariana</creatorcontrib><creatorcontrib>Ganesh, Sudarshan</creatorcontrib><creatorcontrib>Reklaitis, Gintaras V.</creatorcontrib><creatorcontrib>Nagy, Zoltan K.</creatorcontrib><title>Resilience and risk analysis of fault-tolerant process control design in continuous pharmaceutical manufacturing</title><title>Journal of loss prevention in the process industries</title><addtitle>J Loss Prev Process Ind</addtitle><description>The shift from batch to continuous manufacturing, which is occurring in the pharmaceutical manufacturing industry has implications on process safety and product quality. It is now understood that fault-tolerant process control of critical process parameters (CPPs) and critical quality attributes (CQAs) is of paramount importance to the realization of safe operations and quality products. In this study, a systematic framework for fault-tolerant process control system design, analysis, and evaluation of pharmaceutical continuous oral solid dosage manufacturing is proposed. The framework encompasses system identification, controller design and analysis (controllability, stability, resilience, etc.), hierarchical three-level control structures (model predictive control, state estimation, data reconciliation, etc.), risk mapping, assessment and planning (Risk MAP) strategies, and control performance evaluation. The key idea of the proposed framework is to identify the potential risks associated with the control system design itself, the material property variations, and other process uncertainties, under which the control strategies must be evaluated. The framework is applied to a continuous direct compaction process, specifically the feeding-blending subsystem, wherein the major source of variance in the process operation and product quality arises. It is demonstrated, using simulations and experimentally, that the process operation failures and product quality variations in the feeding-blending system can be mitigated and managed through the proposed systematic fault-tolerant process control system design and risk analysis framework. •Systematic risk-based control design in pharmaceutical continuous manufacturing.•Risks evaluated in feeding &amp; blending subsystem of a direct compaction process.•Framework is demonstrated in flowsheet simulations and pilot-plant experiments.</description><subject>Continuous manufacturing</subject><subject>Pharmaceutics</subject><subject>Process control</subject><subject>Resilience</subject><subject>Risk analysis</subject><issn>0950-4230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPxSAQhVlovL5-gBvD0k0rlCJtXBnjKzExMbomXBiuXCmtQE3896JXXbqayeSckzMfQkeU1JTQs9N1vfZT3RDa1UTUhPIttEt6Tqq2YWSB9lJaE0IF6cQOWrAzIQThZBdNj5CcdxA0YBUMji69lkX5j-QSHi22ava5yqOHqELGUxw1pIT1GHIcPTbFvgrYhe-LC_M4Jzy9qDgoDXN2Wnk8qDBbpfMcXVgdoG2rfILDn7mPnq-vni5vq_uHm7vLi_tKt7zPler4kraqpYz2XOum67gVrOuFsE3fUGUYcGg5FYxaaigTYmkM58Ct4cZoYPvoZJNbGr_NkLIcXNLgvQpQOspGCN7zlvWkSOlGquOYUgQrp-gGFT8kJfILrlzLAld-wZVEyAK3eI5_4uflAObP8Uu2CM43AihPvjuIMulvzMZF0Fma0f0T_wnx8I7-</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Su, Qinglin</creator><creator>Moreno, Mariana</creator><creator>Ganesh, Sudarshan</creator><creator>Reklaitis, Gintaras V.</creator><creator>Nagy, Zoltan K.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1545-342X</orcidid><orcidid>https://orcid.org/0000-0003-1710-6920</orcidid></search><sort><creationdate>20180901</creationdate><title>Resilience and risk analysis of fault-tolerant process control design in continuous pharmaceutical manufacturing</title><author>Su, Qinglin ; Moreno, Mariana ; Ganesh, Sudarshan ; Reklaitis, Gintaras V. ; Nagy, Zoltan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-a85b14a413195cc2885f738977f2921ad3e5e451731f1d1377bdd55e5fd5ddce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Continuous manufacturing</topic><topic>Pharmaceutics</topic><topic>Process control</topic><topic>Resilience</topic><topic>Risk analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Qinglin</creatorcontrib><creatorcontrib>Moreno, Mariana</creatorcontrib><creatorcontrib>Ganesh, Sudarshan</creatorcontrib><creatorcontrib>Reklaitis, Gintaras V.</creatorcontrib><creatorcontrib>Nagy, Zoltan K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of loss prevention in the process industries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Qinglin</au><au>Moreno, Mariana</au><au>Ganesh, Sudarshan</au><au>Reklaitis, Gintaras V.</au><au>Nagy, Zoltan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilience and risk analysis of fault-tolerant process control design in continuous pharmaceutical manufacturing</atitle><jtitle>Journal of loss prevention in the process industries</jtitle><addtitle>J Loss Prev Process Ind</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><spage>411</spage><epage>422</epage><pages>411-422</pages><issn>0950-4230</issn><abstract>The shift from batch to continuous manufacturing, which is occurring in the pharmaceutical manufacturing industry has implications on process safety and product quality. It is now understood that fault-tolerant process control of critical process parameters (CPPs) and critical quality attributes (CQAs) is of paramount importance to the realization of safe operations and quality products. In this study, a systematic framework for fault-tolerant process control system design, analysis, and evaluation of pharmaceutical continuous oral solid dosage manufacturing is proposed. The framework encompasses system identification, controller design and analysis (controllability, stability, resilience, etc.), hierarchical three-level control structures (model predictive control, state estimation, data reconciliation, etc.), risk mapping, assessment and planning (Risk MAP) strategies, and control performance evaluation. The key idea of the proposed framework is to identify the potential risks associated with the control system design itself, the material property variations, and other process uncertainties, under which the control strategies must be evaluated. The framework is applied to a continuous direct compaction process, specifically the feeding-blending subsystem, wherein the major source of variance in the process operation and product quality arises. It is demonstrated, using simulations and experimentally, that the process operation failures and product quality variations in the feeding-blending system can be mitigated and managed through the proposed systematic fault-tolerant process control system design and risk analysis framework. •Systematic risk-based control design in pharmaceutical continuous manufacturing.•Risks evaluated in feeding &amp; blending subsystem of a direct compaction process.•Framework is demonstrated in flowsheet simulations and pilot-plant experiments.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36777050</pmid><doi>10.1016/j.jlp.2018.07.015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1545-342X</orcidid><orcidid>https://orcid.org/0000-0003-1710-6920</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-4230
ispartof Journal of loss prevention in the process industries, 2018-09, Vol.55, p.411-422
issn 0950-4230
language eng
recordid cdi_proquest_miscellaneous_2775954390
source ScienceDirect Journals (5 years ago - present)
subjects Continuous manufacturing
Pharmaceutics
Process control
Resilience
Risk analysis
title Resilience and risk analysis of fault-tolerant process control design in continuous pharmaceutical manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilience%20and%20risk%20analysis%20of%20fault-tolerant%20process%20control%20design%20in%20continuous%20pharmaceutical%20manufacturing&rft.jtitle=Journal%20of%20loss%20prevention%20in%20the%20process%20industries&rft.au=Su,%20Qinglin&rft.date=2018-09-01&rft.volume=55&rft.spage=411&rft.epage=422&rft.pages=411-422&rft.issn=0950-4230&rft_id=info:doi/10.1016/j.jlp.2018.07.015&rft_dat=%3Cproquest_cross%3E2775954390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775954390&rft_id=info:pmid/36777050&rft_els_id=S0950423018303310&rfr_iscdi=true