Fractional telegraph equation under moving time-harmonic impact

•The time-fractional telegraph equation with moving time-harmonic source is considered on a real line.•Two characteristic versions of this equation: the “wave-type” with the second and Caputo fractional time-derivatives as well as the “heat-type” with the first and Caputo fractional time-derivatives...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2022-01, Vol.182, p.121958, Article 121958
Hauptverfasser: Povstenko, Yuriy, Ostoja-Starzewski, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121958
container_title International journal of heat and mass transfer
container_volume 182
creator Povstenko, Yuriy
Ostoja-Starzewski, Martin
description •The time-fractional telegraph equation with moving time-harmonic source is considered on a real line.•Two characteristic versions of this equation: the “wave-type” with the second and Caputo fractional time-derivatives as well as the “heat-type” with the first and Caputo fractional time-derivatives are investigated.•The solution to the “wave-type” equation contains wave fronts and describes the Doppler effect contrary to the solution for the “heat-type” equation.•For the time-fractional telegraph equation it is impossible to consider the quasi-steady-state corresponding to the solution being a product of a function of the spatial coordinate and the time-harmonic term.•The derived solutions can be successfully used when the source term can be expanded into a Fourier series. The time-fractional telegraph equation with moving time-harmonic source is considered on a real line. We investigate two characteristic versions of this equation: the “wave-type” with the second and Caputo fractional time-derivatives as well as the “heat-type” with the first and Caputo fractional time-derivatives. In both cases the order of fractional derivative 1
doi_str_mv 10.1016/j.ijheatmasstransfer.2021.121958
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775954053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021010632</els_id><sourcerecordid>2775954053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-12455d6ef704a53fb0d0dc01933a5e59a315646f6b7304fa38a46303cc13d27b3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EoqXwF1Akli4Jdhw78QSoonyoEgvMluNcWkf5aO2kEv8eRy0MsODlZOu593wPQnOCI4IJv60iU21A9Y1yrreqdSXYKMYxiUhMBMtO0JRkqQhjkolTNMWYpKGgBE_QhXPVeMUJP0cTylN_BJ-iu6VVujddq-qghxrWVm03AewGNT4GQ1uADZpub9p10JsGwo2yTdcaHZhm6zsv0VmpagdXxzpDH8vH98VzuHp7elk8rEKdZEkfkjhhrOBQ-g8oRsscF7jQmAhKFQMmFCWMJ7zkeUpxUiqaqYRTTLUmtIjTnM7Q_JC7td1uANfLxjgNda1a6AYn4zRlgiWYUY_e_EKrbrB-QU9xwmOKBcOeuj9Q2nbOWSjl1ppG2U9JsBxly0r-lS1H2fIg20dcHwcNeQPFT8C3XQ-8HgDwZvbGtzttoNVQGAu6l0Vn_j_tC5ram6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616230950</pqid></control><display><type>article</type><title>Fractional telegraph equation under moving time-harmonic impact</title><source>Elsevier ScienceDirect Journals</source><creator>Povstenko, Yuriy ; Ostoja-Starzewski, Martin</creator><creatorcontrib>Povstenko, Yuriy ; Ostoja-Starzewski, Martin</creatorcontrib><description>•The time-fractional telegraph equation with moving time-harmonic source is considered on a real line.•Two characteristic versions of this equation: the “wave-type” with the second and Caputo fractional time-derivatives as well as the “heat-type” with the first and Caputo fractional time-derivatives are investigated.•The solution to the “wave-type” equation contains wave fronts and describes the Doppler effect contrary to the solution for the “heat-type” equation.•For the time-fractional telegraph equation it is impossible to consider the quasi-steady-state corresponding to the solution being a product of a function of the spatial coordinate and the time-harmonic term.•The derived solutions can be successfully used when the source term can be expanded into a Fourier series. The time-fractional telegraph equation with moving time-harmonic source is considered on a real line. We investigate two characteristic versions of this equation: the “wave-type” with the second and Caputo fractional time-derivatives as well as the “heat-type” with the first and Caputo fractional time-derivatives. In both cases the order of fractional derivative 1&lt;α&lt;2. For the time-fractional telegraph equation it is impossible to consider the quasi-steady-state corresponding to the solution being a product of a function of the spatial coordinate and the time-harmonic term. The considered problem is solved using the integral transforms technique. The solution to the “wave-type” equation contains wave fronts and describes the Doppler effect contrary to the solution for the “heat-type” equation. Numerical results are illustrated graphically for different values of nondimensional parameters.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.121958</identifier><identifier>PMID: 36777796</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Caputo derivative ; Doppler effect ; Fourier transform ; Fractional calculus ; Integral transforms ; Laplace transform ; Telegraph equation ; Time-harmonic impact ; Wave fronts</subject><ispartof>International journal of heat and mass transfer, 2022-01, Vol.182, p.121958, Article 121958</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-12455d6ef704a53fb0d0dc01933a5e59a315646f6b7304fa38a46303cc13d27b3</citedby><cites>FETCH-LOGICAL-c484t-12455d6ef704a53fb0d0dc01933a5e59a315646f6b7304fa38a46303cc13d27b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931021010632$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36777796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Povstenko, Yuriy</creatorcontrib><creatorcontrib>Ostoja-Starzewski, Martin</creatorcontrib><title>Fractional telegraph equation under moving time-harmonic impact</title><title>International journal of heat and mass transfer</title><addtitle>Int J Heat Mass Transf</addtitle><description>•The time-fractional telegraph equation with moving time-harmonic source is considered on a real line.•Two characteristic versions of this equation: the “wave-type” with the second and Caputo fractional time-derivatives as well as the “heat-type” with the first and Caputo fractional time-derivatives are investigated.•The solution to the “wave-type” equation contains wave fronts and describes the Doppler effect contrary to the solution for the “heat-type” equation.•For the time-fractional telegraph equation it is impossible to consider the quasi-steady-state corresponding to the solution being a product of a function of the spatial coordinate and the time-harmonic term.•The derived solutions can be successfully used when the source term can be expanded into a Fourier series. The time-fractional telegraph equation with moving time-harmonic source is considered on a real line. We investigate two characteristic versions of this equation: the “wave-type” with the second and Caputo fractional time-derivatives as well as the “heat-type” with the first and Caputo fractional time-derivatives. In both cases the order of fractional derivative 1&lt;α&lt;2. For the time-fractional telegraph equation it is impossible to consider the quasi-steady-state corresponding to the solution being a product of a function of the spatial coordinate and the time-harmonic term. The considered problem is solved using the integral transforms technique. The solution to the “wave-type” equation contains wave fronts and describes the Doppler effect contrary to the solution for the “heat-type” equation. Numerical results are illustrated graphically for different values of nondimensional parameters.</description><subject>Caputo derivative</subject><subject>Doppler effect</subject><subject>Fourier transform</subject><subject>Fractional calculus</subject><subject>Integral transforms</subject><subject>Laplace transform</subject><subject>Telegraph equation</subject><subject>Time-harmonic impact</subject><subject>Wave fronts</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EoqXwF1Akli4Jdhw78QSoonyoEgvMluNcWkf5aO2kEv8eRy0MsODlZOu593wPQnOCI4IJv60iU21A9Y1yrreqdSXYKMYxiUhMBMtO0JRkqQhjkolTNMWYpKGgBE_QhXPVeMUJP0cTylN_BJ-iu6VVujddq-qghxrWVm03AewGNT4GQ1uADZpub9p10JsGwo2yTdcaHZhm6zsv0VmpagdXxzpDH8vH98VzuHp7elk8rEKdZEkfkjhhrOBQ-g8oRsscF7jQmAhKFQMmFCWMJ7zkeUpxUiqaqYRTTLUmtIjTnM7Q_JC7td1uANfLxjgNda1a6AYn4zRlgiWYUY_e_EKrbrB-QU9xwmOKBcOeuj9Q2nbOWSjl1ppG2U9JsBxly0r-lS1H2fIg20dcHwcNeQPFT8C3XQ-8HgDwZvbGtzttoNVQGAu6l0Vn_j_tC5ram6g</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Povstenko, Yuriy</creator><creator>Ostoja-Starzewski, Martin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>202201</creationdate><title>Fractional telegraph equation under moving time-harmonic impact</title><author>Povstenko, Yuriy ; Ostoja-Starzewski, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-12455d6ef704a53fb0d0dc01933a5e59a315646f6b7304fa38a46303cc13d27b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Caputo derivative</topic><topic>Doppler effect</topic><topic>Fourier transform</topic><topic>Fractional calculus</topic><topic>Integral transforms</topic><topic>Laplace transform</topic><topic>Telegraph equation</topic><topic>Time-harmonic impact</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Povstenko, Yuriy</creatorcontrib><creatorcontrib>Ostoja-Starzewski, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Povstenko, Yuriy</au><au>Ostoja-Starzewski, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional telegraph equation under moving time-harmonic impact</atitle><jtitle>International journal of heat and mass transfer</jtitle><addtitle>Int J Heat Mass Transf</addtitle><date>2022-01</date><risdate>2022</risdate><volume>182</volume><spage>121958</spage><pages>121958-</pages><artnum>121958</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•The time-fractional telegraph equation with moving time-harmonic source is considered on a real line.•Two characteristic versions of this equation: the “wave-type” with the second and Caputo fractional time-derivatives as well as the “heat-type” with the first and Caputo fractional time-derivatives are investigated.•The solution to the “wave-type” equation contains wave fronts and describes the Doppler effect contrary to the solution for the “heat-type” equation.•For the time-fractional telegraph equation it is impossible to consider the quasi-steady-state corresponding to the solution being a product of a function of the spatial coordinate and the time-harmonic term.•The derived solutions can be successfully used when the source term can be expanded into a Fourier series. The time-fractional telegraph equation with moving time-harmonic source is considered on a real line. We investigate two characteristic versions of this equation: the “wave-type” with the second and Caputo fractional time-derivatives as well as the “heat-type” with the first and Caputo fractional time-derivatives. In both cases the order of fractional derivative 1&lt;α&lt;2. For the time-fractional telegraph equation it is impossible to consider the quasi-steady-state corresponding to the solution being a product of a function of the spatial coordinate and the time-harmonic term. The considered problem is solved using the integral transforms technique. The solution to the “wave-type” equation contains wave fronts and describes the Doppler effect contrary to the solution for the “heat-type” equation. Numerical results are illustrated graphically for different values of nondimensional parameters.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36777796</pmid><doi>10.1016/j.ijheatmasstransfer.2021.121958</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2022-01, Vol.182, p.121958, Article 121958
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_2775954053
source Elsevier ScienceDirect Journals
subjects Caputo derivative
Doppler effect
Fourier transform
Fractional calculus
Integral transforms
Laplace transform
Telegraph equation
Time-harmonic impact
Wave fronts
title Fractional telegraph equation under moving time-harmonic impact
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20telegraph%20equation%20under%20moving%20time-harmonic%20impact&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Povstenko,%20Yuriy&rft.date=2022-01&rft.volume=182&rft.spage=121958&rft.pages=121958-&rft.artnum=121958&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.121958&rft_dat=%3Cproquest_cross%3E2775954053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616230950&rft_id=info:pmid/36777796&rft_els_id=S0017931021010632&rfr_iscdi=true