Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations
This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any Hölder smooth function up to a given approximation error in Hölder norms in such...
Gespeichert in:
Veröffentlicht in: | Neural networks 2023-04, Vol.161, p.242-253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!