Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations
This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any Hölder smooth function up to a given approximation error in Hölder norms in such...
Gespeichert in:
Veröffentlicht in: | Neural networks 2023-04, Vol.161, p.242-253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | |
container_start_page | 242 |
container_title | Neural networks |
container_volume | 161 |
creator | Belomestny, Denis Naumov, Alexey Puchkin, Nikita Samsonov, Sergey |
description | This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any Hölder smooth function up to a given approximation error in Hölder norms in such a way that all weights of this neural network are bounded by 1. The latter feature is essential to control generalization errors in many statistical and machine learning applications.
•Rates and complexity for smooth function approximation in Hölder norms by ReQU neural networks.•Explicit and uniform bounds for weights of the approximating neural network.•Exponential convergence rates for analytic functions. |
doi_str_mv | 10.1016/j.neunet.2023.01.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775950693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608023000473</els_id><sourcerecordid>2775950693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-8194e95c8824a13371fa111b701fb04c6ddc99c5e01f03f9671cf7e19a81d1963</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EotvCN0DIRy4JnjjxnwsSqgpUqsQBOFteZyK8JHGwnV32yDfHbQpHTqOxfm-e3yPkFbAaGIi3h3rGdcZcN6zhNYOa8e4J2YGSumqkap6SHVOaV4IpdkEuUzowxoRq-XNywYWUrRJ8R35_8dM6ZjtjWBO1yxLDLz_Z7MNMw0AtTVMI-Tsd1tk9PNq5pz4n2mP0x8IdMdH9uay40PKhaMcy8inEH4mefFEuHh2efMJqCeN5DpMviC3Hjg8u6QV5Ntgx4cvHeUW-fbj5ev2puvv88fb6_V3luGhypUC3qDunVNNa4FzCYAFgLxkMe9Y60fdOa9dh2RkftJDgBomgrYIetOBX5M12t0T8uWLKZvLJ4Thu2U0jZac7JjQvaLuhLoaUIg5miaWUeDbAzH355mC28s19-YaBKeUX2etHh3U_Yf9P9LftArzbACw5jx6jSc7j7LD3EV02ffD_d_gDhsubEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775950693</pqid></control><display><type>article</type><title>Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Belomestny, Denis ; Naumov, Alexey ; Puchkin, Nikita ; Samsonov, Sergey</creator><creatorcontrib>Belomestny, Denis ; Naumov, Alexey ; Puchkin, Nikita ; Samsonov, Sergey</creatorcontrib><description>This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any Hölder smooth function up to a given approximation error in Hölder norms in such a way that all weights of this neural network are bounded by 1. The latter feature is essential to control generalization errors in many statistical and machine learning applications.
•Rates and complexity for smooth function approximation in Hölder norms by ReQU neural networks.•Explicit and uniform bounds for weights of the approximating neural network.•Exponential convergence rates for analytic functions.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2023.01.035</identifier><identifier>PMID: 36774863</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Approximation complexity ; Deep neural networks ; Hölder class ; Machine Learning ; Neural Networks, Computer ; ReLUk activations ; ReQU activations</subject><ispartof>Neural networks, 2023-04, Vol.161, p.242-253</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-8194e95c8824a13371fa111b701fb04c6ddc99c5e01f03f9671cf7e19a81d1963</citedby><cites>FETCH-LOGICAL-c362t-8194e95c8824a13371fa111b701fb04c6ddc99c5e01f03f9671cf7e19a81d1963</cites><orcidid>0000-0002-9482-6430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2023.01.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36774863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belomestny, Denis</creatorcontrib><creatorcontrib>Naumov, Alexey</creatorcontrib><creatorcontrib>Puchkin, Nikita</creatorcontrib><creatorcontrib>Samsonov, Sergey</creatorcontrib><title>Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any Hölder smooth function up to a given approximation error in Hölder norms in such a way that all weights of this neural network are bounded by 1. The latter feature is essential to control generalization errors in many statistical and machine learning applications.
•Rates and complexity for smooth function approximation in Hölder norms by ReQU neural networks.•Explicit and uniform bounds for weights of the approximating neural network.•Exponential convergence rates for analytic functions.</description><subject>Algorithms</subject><subject>Approximation complexity</subject><subject>Deep neural networks</subject><subject>Hölder class</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><subject>ReLUk activations</subject><subject>ReQU activations</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS0EotvCN0DIRy4JnjjxnwsSqgpUqsQBOFteZyK8JHGwnV32yDfHbQpHTqOxfm-e3yPkFbAaGIi3h3rGdcZcN6zhNYOa8e4J2YGSumqkap6SHVOaV4IpdkEuUzowxoRq-XNywYWUrRJ8R35_8dM6ZjtjWBO1yxLDLz_Z7MNMw0AtTVMI-Tsd1tk9PNq5pz4n2mP0x8IdMdH9uay40PKhaMcy8inEH4mefFEuHh2efMJqCeN5DpMviC3Hjg8u6QV5Ntgx4cvHeUW-fbj5ev2puvv88fb6_V3luGhypUC3qDunVNNa4FzCYAFgLxkMe9Y60fdOa9dh2RkftJDgBomgrYIetOBX5M12t0T8uWLKZvLJ4Thu2U0jZac7JjQvaLuhLoaUIg5miaWUeDbAzH355mC28s19-YaBKeUX2etHh3U_Yf9P9LftArzbACw5jx6jSc7j7LD3EV02ffD_d_gDhsubEg</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Belomestny, Denis</creator><creator>Naumov, Alexey</creator><creator>Puchkin, Nikita</creator><creator>Samsonov, Sergey</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9482-6430</orcidid></search><sort><creationdate>202304</creationdate><title>Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations</title><author>Belomestny, Denis ; Naumov, Alexey ; Puchkin, Nikita ; Samsonov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-8194e95c8824a13371fa111b701fb04c6ddc99c5e01f03f9671cf7e19a81d1963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Approximation complexity</topic><topic>Deep neural networks</topic><topic>Hölder class</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><topic>ReLUk activations</topic><topic>ReQU activations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belomestny, Denis</creatorcontrib><creatorcontrib>Naumov, Alexey</creatorcontrib><creatorcontrib>Puchkin, Nikita</creatorcontrib><creatorcontrib>Samsonov, Sergey</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belomestny, Denis</au><au>Naumov, Alexey</au><au>Puchkin, Nikita</au><au>Samsonov, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2023-04</date><risdate>2023</risdate><volume>161</volume><spage>242</spage><epage>253</epage><pages>242-253</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any Hölder smooth function up to a given approximation error in Hölder norms in such a way that all weights of this neural network are bounded by 1. The latter feature is essential to control generalization errors in many statistical and machine learning applications.
•Rates and complexity for smooth function approximation in Hölder norms by ReQU neural networks.•Explicit and uniform bounds for weights of the approximating neural network.•Exponential convergence rates for analytic functions.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36774863</pmid><doi>10.1016/j.neunet.2023.01.035</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9482-6430</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2023-04, Vol.161, p.242-253 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_2775950693 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Approximation complexity Deep neural networks Hölder class Machine Learning Neural Networks, Computer ReLUk activations ReQU activations |
title | Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20approximation%20of%20a%20smooth%20function%20and%20its%20derivatives%20by%20deep%20neural%20networks%20with%20piecewise-polynomial%20activations&rft.jtitle=Neural%20networks&rft.au=Belomestny,%20Denis&rft.date=2023-04&rft.volume=161&rft.spage=242&rft.epage=253&rft.pages=242-253&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2023.01.035&rft_dat=%3Cproquest_cross%3E2775950693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775950693&rft_id=info:pmid/36774863&rft_els_id=S0893608023000473&rfr_iscdi=true |