Thermoplastic Elastomer Hydrogels via Self-Assembly of an Elastin-Mimetic Triblock Polypeptide

Protein‐based analogues of conventional thermoplastic elastomers can be designed with enhanced properties as a consequence of the precise control of primary structure. Protein 1 undergoes a reversible sol–gel transition, which results in the formation of a well‐defined elastomeric network above a lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2002-02, Vol.12 (2), p.149-154
Hauptverfasser: Wright, E.R., McMillan, R.A., Cooper, A., Apkarian, R.P., Conticello, V.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 2
container_start_page 149
container_title Advanced functional materials
container_volume 12
creator Wright, E.R.
McMillan, R.A.
Cooper, A.
Apkarian, R.P.
Conticello, V.P.
description Protein‐based analogues of conventional thermoplastic elastomers can be designed with enhanced properties as a consequence of the precise control of primary structure. Protein 1 undergoes a reversible sol–gel transition, which results in the formation of a well‐defined elastomeric network above a lower critical solution temperature. The morphology of the network is consistent with selective microscopic phase separation of the endblock domains. This genetic engineering approach provides a method for specification of the critical architectural parameters, such as block length and sequence, which define macromolecular properties that are important for downstream applications. Protein‐based analogues of conventional thermoplastic elastomers can be designed with enhanced properties as a consequence of the precise control of primary structure. Protein 1 (see Figure) undergoes a reversible sol–gel transition, which results in the formation of a well‐defined elastomeric network above a lower critical solution temperature.
doi_str_mv 10.1002/1616-3028(20020201)12:2<149::AID-ADFM149>3.0.CO;2-N
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27758317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27758317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4449-85bd94f65a9e90c0ce1f969d9dd5e3d7d69f10aa478c550c63e7fca1fd61d8833</originalsourceid><addsrcrecordid>eNqVkE1v1DAQhiMEEqXwH3JCcMhix04cbxHSsv3WdhfRRe2JkdeegKmzDvYWyL8nUdo9cUE-jGfmnefwJMkRJRNKSP6OlrTMGMmrN3nf9o--pfk0f0-5nE5nF8fZ7Pj0qm8-sAmZzFdHebZ8khzsr57u__T2efIixh-EUCEYP0i-rr9jaHzrVNxZnZ4M1TcY0vPOBP8NXUx_WZVeo6uzWYzYbFyX-jpV2zFrt9mVbXC4XQe7cV7fpZ-861psd9bgy-RZrVzEVw_1MPlyerKen2eL1dnFfLbINOdcZlWxMZLXZaEkSqKJRlrLUhppTIHMCFPKmhKluKh0URBdMhS1VrQ2JTVVxdhh8nrktsH_vMe4g8ZGjc6pLfr7CLkQRcWo6IPXY1AHH2PAGtpgGxU6oAQG1zCYgsEaPLoGmkM_5xKgdw0ProEBgfmq3yx76s1I_W0ddv-F_DfxcdSTs5Fs4w7_7Mkq3EEpmCjgZnkGjF8uio-Xn-GW_QVUGKCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27758317</pqid></control><display><type>article</type><title>Thermoplastic Elastomer Hydrogels via Self-Assembly of an Elastin-Mimetic Triblock Polypeptide</title><source>Wiley Online Library All Journals</source><creator>Wright, E.R. ; McMillan, R.A. ; Cooper, A. ; Apkarian, R.P. ; Conticello, V.P.</creator><creatorcontrib>Wright, E.R. ; McMillan, R.A. ; Cooper, A. ; Apkarian, R.P. ; Conticello, V.P.</creatorcontrib><description>Protein‐based analogues of conventional thermoplastic elastomers can be designed with enhanced properties as a consequence of the precise control of primary structure. Protein 1 undergoes a reversible sol–gel transition, which results in the formation of a well‐defined elastomeric network above a lower critical solution temperature. The morphology of the network is consistent with selective microscopic phase separation of the endblock domains. This genetic engineering approach provides a method for specification of the critical architectural parameters, such as block length and sequence, which define macromolecular properties that are important for downstream applications. Protein‐based analogues of conventional thermoplastic elastomers can be designed with enhanced properties as a consequence of the precise control of primary structure. Protein 1 (see Figure) undergoes a reversible sol–gel transition, which results in the formation of a well‐defined elastomeric network above a lower critical solution temperature.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/1616-3028(20020201)12:2&lt;149::AID-ADFM149&gt;3.0.CO;2-N</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag Gmbh</publisher><subject>Hydrogels ; Polypeptides ; Self-assembly</subject><ispartof>Advanced functional materials, 2002-02, Vol.12 (2), p.149-154</ispartof><rights>2002 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4449-85bd94f65a9e90c0ce1f969d9dd5e3d7d69f10aa478c550c63e7fca1fd61d8833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1616-3028%2820020201%2912%3A2%3C149%3A%3AAID-ADFM149%3E3.0.CO%3B2-N$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1616-3028%2820020201%2912%3A2%3C149%3A%3AAID-ADFM149%3E3.0.CO%3B2-N$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wright, E.R.</creatorcontrib><creatorcontrib>McMillan, R.A.</creatorcontrib><creatorcontrib>Cooper, A.</creatorcontrib><creatorcontrib>Apkarian, R.P.</creatorcontrib><creatorcontrib>Conticello, V.P.</creatorcontrib><title>Thermoplastic Elastomer Hydrogels via Self-Assembly of an Elastin-Mimetic Triblock Polypeptide</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Protein‐based analogues of conventional thermoplastic elastomers can be designed with enhanced properties as a consequence of the precise control of primary structure. Protein 1 undergoes a reversible sol–gel transition, which results in the formation of a well‐defined elastomeric network above a lower critical solution temperature. The morphology of the network is consistent with selective microscopic phase separation of the endblock domains. This genetic engineering approach provides a method for specification of the critical architectural parameters, such as block length and sequence, which define macromolecular properties that are important for downstream applications. Protein‐based analogues of conventional thermoplastic elastomers can be designed with enhanced properties as a consequence of the precise control of primary structure. Protein 1 (see Figure) undergoes a reversible sol–gel transition, which results in the formation of a well‐defined elastomeric network above a lower critical solution temperature.</description><subject>Hydrogels</subject><subject>Polypeptides</subject><subject>Self-assembly</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqVkE1v1DAQhiMEEqXwH3JCcMhix04cbxHSsv3WdhfRRe2JkdeegKmzDvYWyL8nUdo9cUE-jGfmnefwJMkRJRNKSP6OlrTMGMmrN3nf9o--pfk0f0-5nE5nF8fZ7Pj0qm8-sAmZzFdHebZ8khzsr57u__T2efIixh-EUCEYP0i-rr9jaHzrVNxZnZ4M1TcY0vPOBP8NXUx_WZVeo6uzWYzYbFyX-jpV2zFrt9mVbXC4XQe7cV7fpZ-861psd9bgy-RZrVzEVw_1MPlyerKen2eL1dnFfLbINOdcZlWxMZLXZaEkSqKJRlrLUhppTIHMCFPKmhKluKh0URBdMhS1VrQ2JTVVxdhh8nrktsH_vMe4g8ZGjc6pLfr7CLkQRcWo6IPXY1AHH2PAGtpgGxU6oAQG1zCYgsEaPLoGmkM_5xKgdw0ProEBgfmq3yx76s1I_W0ddv-F_DfxcdSTs5Fs4w7_7Mkq3EEpmCjgZnkGjF8uio-Xn-GW_QVUGKCM</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Wright, E.R.</creator><creator>McMillan, R.A.</creator><creator>Cooper, A.</creator><creator>Apkarian, R.P.</creator><creator>Conticello, V.P.</creator><general>WILEY-VCH Verlag Gmbh</general><general>WILEY‐VCH Verlag Gmbh</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20020201</creationdate><title>Thermoplastic Elastomer Hydrogels via Self-Assembly of an Elastin-Mimetic Triblock Polypeptide</title><author>Wright, E.R. ; McMillan, R.A. ; Cooper, A. ; Apkarian, R.P. ; Conticello, V.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4449-85bd94f65a9e90c0ce1f969d9dd5e3d7d69f10aa478c550c63e7fca1fd61d8833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Hydrogels</topic><topic>Polypeptides</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wright, E.R.</creatorcontrib><creatorcontrib>McMillan, R.A.</creatorcontrib><creatorcontrib>Cooper, A.</creatorcontrib><creatorcontrib>Apkarian, R.P.</creatorcontrib><creatorcontrib>Conticello, V.P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wright, E.R.</au><au>McMillan, R.A.</au><au>Cooper, A.</au><au>Apkarian, R.P.</au><au>Conticello, V.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoplastic Elastomer Hydrogels via Self-Assembly of an Elastin-Mimetic Triblock Polypeptide</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2002-02-01</date><risdate>2002</risdate><volume>12</volume><issue>2</issue><spage>149</spage><epage>154</epage><pages>149-154</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Protein‐based analogues of conventional thermoplastic elastomers can be designed with enhanced properties as a consequence of the precise control of primary structure. Protein 1 undergoes a reversible sol–gel transition, which results in the formation of a well‐defined elastomeric network above a lower critical solution temperature. The morphology of the network is consistent with selective microscopic phase separation of the endblock domains. This genetic engineering approach provides a method for specification of the critical architectural parameters, such as block length and sequence, which define macromolecular properties that are important for downstream applications. Protein‐based analogues of conventional thermoplastic elastomers can be designed with enhanced properties as a consequence of the precise control of primary structure. Protein 1 (see Figure) undergoes a reversible sol–gel transition, which results in the formation of a well‐defined elastomeric network above a lower critical solution temperature.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag Gmbh</pub><doi>10.1002/1616-3028(20020201)12:2&lt;149::AID-ADFM149&gt;3.0.CO;2-N</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2002-02, Vol.12 (2), p.149-154
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_27758317
source Wiley Online Library All Journals
subjects Hydrogels
Polypeptides
Self-assembly
title Thermoplastic Elastomer Hydrogels via Self-Assembly of an Elastin-Mimetic Triblock Polypeptide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoplastic%20Elastomer%20Hydrogels%20via%20Self-Assembly%20of%20an%20Elastin-Mimetic%20Triblock%20Polypeptide&rft.jtitle=Advanced%20functional%20materials&rft.au=Wright,%20E.R.&rft.date=2002-02-01&rft.volume=12&rft.issue=2&rft.spage=149&rft.epage=154&rft.pages=149-154&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/1616-3028(20020201)12:2%3C149::AID-ADFM149%3E3.0.CO;2-N&rft_dat=%3Cproquest_cross%3E27758317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27758317&rft_id=info:pmid/&rfr_iscdi=true